import rasterio
import numpy as np
import os
print('All libraries successfully imported!')
All libraries successfully imported!
computer_path = '/export/miro/ndeffense/LBRAT2104/'
grp_letter = 'X'
# Directory for all work files
work_path = f'{computer_path}GROUP_{grp_letter}/WORK/'
input_file = f'{work_path}NDVI/T31UFS_20200417T104021_NDVI.tif'
output_file = f'{input_file[:-4]}_reclassified.tif'
nodata_val = -10000
# User must defined intervals
interval = [-1,-0.5,0,0.5,1]
dtype_out = 'int16'
print(interval)
[-1, -0.5, 0, 0.5, 1]
Return the indices of the bins to which each value in input array belongs.
right |
order of bins | returned index i satisfies |
---|---|---|
False |
increasing | bins[i-1] <= x < bins[i] |
True |
increasing | bins[i-1] < x <= bins[i] |
False |
decreasing | bins[i-1] > x >= bins[i] |
True |
decreasing | bins[i-1] >= x > bins[i] |
By default, right
= False
If values in x
are beyond the bounds of bins
, 0 or len(bins)
is returned as appropriate.
https://numpy.org/doc/stable/reference/generated/numpy.digitize.html
x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
bins = np.array([0, 5, 10, 15, 20])
inds_right_true = np.digitize(x,bins,right=True)
inds_right_false = np.digitize(x,bins,right=False)
print(f'Original continuous values : {x}')
print(f'Interval : {bins}')
print('Reclassified discrete values : ')
print(inds_right_true)
print(inds_right_false)
Original continuous values : [ 1.2 10. 12.4 15.5 20. ] Interval : [ 0 5 10 15 20] Reclassified discrete values : [1 2 3 4 4] [1 3 3 4 5]
src = rasterio.open(input_file, 'r')
im_arr = src.read()
# Update the dtype in raster metadata (= profile)
profile = src.profile
profile.update(dtype = dtype_out)
# Replace -10000 by np.nan
im_arr[im_arr==nodata_val] = np.nan
# Create a mask with all no data value
mask = np.isnan(im_arr)
# Convert interval into array
bins = np.array(interval)
# Return the indices of the bins to which each value in input array belongs
im_arr_reclass = np.digitize(im_arr, bins, right=False)
# Apply mask on reclassified raster
im_arr_reclass = np.where(mask, nodata_val, im_arr_reclass)
# Change dtype of raster to match the dtype of profile
im_arr_reclass = im_arr_reclass.astype(dtype_out)
print(f'data type = {im_arr_reclass.dtype}')
print(im_arr_reclass)
# Write output file
dst = rasterio.open(output_file, "w", **profile)
dst.write(im_arr_reclass)
src.close()
dst.close()
data type = int16 [[[4 4 4 ... 4 4 4] [4 4 4 ... 4 4 3] [4 4 4 ... 4 3 3] ... [4 4 4 ... 3 3 3] [4 4 4 ... 3 3 3] [4 4 4 ... 3 3 3]]]