import glob, os
import numpy as np
import pandas as pd
import geopandas as gpd
import rasterio
import rasterio.plot
import datetime
from pathlib import Path
from IPython.display import display
print('All libraries successfully imported!')
All libraries successfully imported!
computer_path = '/export/miro/ndeffense/LBRAT2104/'
grp_letter = 'X'
data_path = f'{computer_path}data/' # Directory with data shared by the assistant
work_path = f'{computer_path}GROUP_{grp_letter}/WORK/' # Directory for all work files
# Image timeserie directory
ts_path = f'{work_path}NDVI/'
raster_file_list = sorted(glob.glob(f'{ts_path}*.tif'))
# Output directory
composite_path = f'{work_path}COMPOSITE/'
Path(composite_path).mkdir(parents=True, exist_ok=True)
method = 'minimum'
The date must be in each image filename. begin_date
is the first position of the date
E.g. : "SITE320181108_NDVI.tif" --> begin_date = 8
format = '%Y%m%d' # format : YYYYMMDD
begin_date = 8
composite_tif = f'{composite_path}composite_{method}.tif'
dict_list = []
for im in raster_file_list:
date_str = os.path.basename(im)[begin_date-1:begin_date-1+8]
date_im = datetime.datetime.strptime(date_str, format).date()
dict_list.append({'date': date_im,
'im_path': im})
im_date_path_df = pd.DataFrame.from_dict(dict_list).sort_values('date')
display(im_date_path_df)
date | im_path | |
---|---|---|
0 | 2020-01-16 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
1 | 2020-02-12 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
2 | 2020-03-16 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
3 | 2020-04-17 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
4 | 2020-05-20 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
5 | 2020-06-21 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
6 | 2020-07-19 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
7 | 2020-08-13 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
8 | 2020-09-14 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
9 | 2020-10-19 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
10 | 2020-11-18 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
11 | 2020-12-18 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
start_date = datetime.datetime.strptime('20200101', format).date()
end_date = datetime.datetime.strptime('20200601', format).date()
mask = (im_date_path_df['date'] > start_date) & (im_date_path_df['date'] <= end_date)
im_date_path_df = im_date_path_df.loc[mask]
display(im_date_path_df)
date | im_path | |
---|---|---|
0 | 2020-01-16 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
1 | 2020-02-12 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
2 | 2020-03-16 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
3 | 2020-04-17 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
4 | 2020-05-20 | /export/miro/ndeffense/LBRAT2104/GROUP_X/WORK/... |
list_src_arr = []
for i, row in im_date_path_df.iterrows():
im_file = row['im_path']
src = rasterio.open(im_file, "r")
im_arr = src.read(1)
list_src_arr.append(im_arr)
src.close()
print(f'Shape of features : {im_arr.shape}')
print(f'Number of features : {len(list_src_arr)}')
Shape of features : (570, 986) Number of features : 5
im_arr_stack = np.dstack(list_src_arr)
print(im_arr_stack.shape)
print(f'There are {im_arr_stack.shape[2]} features')
print(f'The features type is : {im_arr_stack.dtype}')
(570, 986, 5) There are 5 features The features type is : float64
if method == 'median':
compo_arr = np.nanmedian(im_arr_stack, axis=2)
elif method == 'mean':
compo_arr = np.nanmean(im_arr_stack, axis=2)
elif method == 'std':
compo_arr = np.nanstd(im_arr_stack, axis=2)
elif method == 'minimum':
compo_arr = np.nanmin(im_arr_stack, axis=2)
elif method == 'maximum':
compo_arr = np.nanmax(im_arr_stack, axis=2)
else:
print(f'Method not available !')
print(compo_arr)
[[0.42912925 0.43237788 0.37547408 ... 0.5170441 0.49381541 0.34527089] [0.43097239 0.43376623 0.42655262 ... 0.49025202 0.32620818 0.20146688] [0.43283582 0.44285215 0.44069015 ... 0.33983287 0.18755803 0.14951095] ... [0.59484778 0.55236576 0.55077539 ... 0.32256267 0.24806746 0.31261561] [0.60609911 0.56308411 0.55648536 ... 0.32063146 0.24914676 0.25447244] [0.66213314 0.596366 0.59649123 ... 0.3208756 0.23613963 0.26780627]]
/export/miro/ndeffense/.local/lib/python3.6/site-packages/ipykernel_launcher.py:11: RuntimeWarning: All-NaN slice encountered # This is added back by InteractiveShellApp.init_path()
img_temp_tif = raster_file_list[0]
with rasterio.open(img_temp_tif) as src:
profile = src.profile
print(profile)
with rasterio.open(composite_tif, "w", **profile) as dst:
dst.write(compo_arr, 1)
{'driver': 'GTiff', 'dtype': 'float64', 'nodata': -10000.0, 'width': 986, 'height': 570, 'count': 1, 'crs': CRS.from_epsg(32631), 'transform': Affine(10.0, 0.0, 627260.0, 0.0, -10.0, 5596180.0), 'tiled': False, 'compress': 'lzw', 'interleave': 'band'}