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Overview 
Jacques Delincé

The purpose of this handbook on Remote Sensing for Agricultural Statistics is to provide guidelines on the use of 
remote sensing in the context of agricultural statistics. Since the mid-1970s, remote sensing has been considered a 
promising technique for improving agricultural statistics. Various applications of remote sensing have taken place 
on all continents and today, several approaches may be considered mature enough to contribute to the sustainability 
of agricultural statistics. In the context of the Global Strategy to improve Agricultural and Rural Statistics (hereafter, 
GSARS or Global Strategy; see World Bank, 2011), remote sensing has been identified as a prime contributor to 
the localization and geocoding of the sampling units, a point of reference for Master Sampling Frames (MSFs), a 
methodological improvement in design and estimation terms, as a way to achieve sustainability and as a core data 
set for indicators linked to land uses and covers. 

The Research component of the Global Strategy to improve Agricultural and Rural Statistics identified the use of 
remote sensing as one of its themes of activity. This led to the issue of five publications on remote sensing:

•	 Developing More Efficient and Accurate Methods for Using Remote Sensing (2014)
•	 Technical Report on Improving the Use of GPS, GIS and Remote Sensing in Setting Up Master Sampling Frames 

(2014)
•	 Spatial Disaggregation and Small-Area Estimation Methods for Agricultural Surveys: Solutions and Perspectives 

(2015)
•	 Technical Report on Cost-Effectiveness of using Remote Sensing for Agricultural Statistics in Developing and 

Emerging Economies (2015)
•	 Information on Land in the Context of Agricultural Statistics (2016)

In its 2009 handbook titled Geospatial Infrastructure in Support of Census Activities, the Statistics Division of 
the United Nations began to recommend the use of satellite and aerial imagery for the planning, execution and 
dissemination of census activities. In 2010, the Global Earth Observation System of Systems (GEOSS) Community 
of Practice published best practices for crop area estimation with remote sensing. Since 2014, on a monthly basis, 
the Agricultural Market Information System (AMIS) initiative based within the Food and Agriculture Organization 
of the United Nations (FAO) has been publishing the Group on Earth Observations GLobal Agricultural Monitoring 
(GEOGLAM) Remote Sensing analyses, aiming to provide real-time monitoring of areas and production for the 
major traded commodities. 

The literature provides various publications dealing with the use of remote sensing in official statistics (FAO, 2015); 
however, the vast majority of publications focus on specific technical problems without exploring how to start 
integrating remote sensing into the process of compiling official statistics.

This handbook seeks to enable interested readers to comprehend whether remote sensing can meet their needs, and 
if its adoption can improve timeliness, coverage, precision and/or costs in a sustainable manner.  

In line with the three GSARS pillars (World Bank, 2011), the current priorities of agricultural statistical services 
should be (1) establishing a master frame to foster the integration of agricultural statistics within the national 
statistical system; (2) improving the coverage, bias and precision of the estimates of the core indicators; and 
(3) selecting practices that are sustainable in terms of cost-efficiency, flexibility and accessibility. The technical 
advances in the digital management of information, global positioning and open access to remote sensing offer 
important opportunities to meet these priorities and indeed inspired the drafting and publication of this handbook. 
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The structure of the handbook reflects the diversity and complexity of the domain of agricultural statistics, as well 
as of the technicalities of remote sensing:
•	 An agricultural statistical information system is composed of several layers, each corresponding to different core 

statistical topics and societal needs. Remote sensing can be particularly efficient in improving Global Strategy 
core items linked to crop areas, yields and productions. Its role is highly versatile, potentially ranging from 
optimization of sampling design to the facilitation of the the fieldwork of enumerators, quality assurance and 
even data production. Societal needs can be separated into two components: (1) the production forecasts from 
early season to pre-harvest time, for food security monitoring and (2) classical agricultural statistics, of which 
the continuity and consistency over time will allow policy-makers to plan and evaluate agricultural policy and 
its positive effect on total factor productivity, farmer income and rural development.

•	 The techniques associated with remote sensing raise issues pertaining to the sensors (optical or radar), image 
resolution (30 cm to 5 m) and revisiting time (one hour to 16 days); to (non-)open access and the (generally 
prohibitive) associated prices; and to the software and hardware available for image analysis (open-source or 
commercial software, local or cloud computing). This aspect will require managers to identify the time, resources 
and staff competences required to move from experimentation to operational activities.

Chapter 1 describes the data sets relevant to the integration of remote sensing within agricultural statistics. First, 
the remote sensing data sources themselves will be addressed. The role of reference data and ancillary data layers, 
and their use in stratification and aggregation, will also be discussed. A key issue arising recently in data access is 
the general trend towards open access. Thus, while the major commercial remote sensing missions will be listed for 
reference, attention will be paid to open-access sources for a number of reasons: (1) to create wider awareness on 
data sets that are available under free and open licenses; (2) to provide a thorough understanding of how these data 
can be assessed; and (3) to discuss how open data can be used to optimize the acquisition – i.e. minimize the costs – 
of commercial data. Remote sensing data, from both open and commercial sources, usually requires post-processing 
for follow-up use in statistical analyses. The use of open-source software for image processing and geospatial 
analysis is another important development that accelerates the broader adoption of remote sensing data. The use 
of open-source software is discussed, and a listing of commercial software alternatives is provided. The chapter 
concludes with a discussion of the more recent trend to move data analytics into cloud computing environments.

Chapter 2 deals with land cover mapping. It first introduces the concept of land cover and then reviews some key 
elements of land cover mapping. Existing land cover maps are discussed systematically, based on a set of well-
defined criteria. While land cover map supporting stratification always refers to previous years, recent experiences of 
map production throughout the ongoing season will also be explored. Today, land surface can be described in several 
ways, thanks to the unprecedented development of information technology and observation capabilities, ranging 
from Unmanned Aerial Vehicles (UAVs) to in-orbit Earth Observation (EO) platforms. Satellite remote sensing is 
an undisputed source of land information for a vast range of users at all geographical scales. Due to the increasing 
gap between remote sensing producers and map users, which is very much supported by spatial data infrastructure 
making a great deal of geographic information widely available, it is important to understand the different concepts 
and constraints underlying land cover mapping. This becomes even more critical when considering the use of a 
land cover map to support stratification at the sampling design level in the context of agricultural statistics. Indeed, 
maps derived from remote sensing that show, for instance, crop intensity classes, may significantly reduce sampling 
variances or, simply, reduce ground sampling effort and its associated costs. A land cover map can highlight the non-
agricultural strata which should not be sampled or those strata which could be sampled differently. The efficiency 
of stratification is obviously related to the relevance of the land cover map selected for the stratification.
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Chapter 3 focuses upon the use of remote sensing at design level in list and area frames. In the context of censuses, 
surveys or registers, satellite imagery can be of great support when defining or optimizing the design options. 
The imagery may be of primary importance when reference maps are absent or obsolete, as they enable a clear 
delimitation of the Enumeration Area (EA), the counting of dwellings and the planning of the workload. With 
reference to surveys, stratification on classified imagery will lead to a reduced sampling variance and a variation 
of sampling fraction (or of the probability proportional to size – PPS) that is proportional to agricultural intensity. 
Particular attention is paid to the creation of list frames, starting with the point area frame. With regard to area frames, 
if, in stratification, the strata should be as different as possible, in two-stage sampling, the Primary Sampling Units 
(PSUs) should be as similar as possible. In both scenarios, the imagery is of great help. The chapter reviews practical 
examples in developing and developed countries, thus illustrating the type of efficiency and homogeneity that can 
be achieved. Recommendations are given on segment size optimization in function of field pattern complexity.

The overarching goal of Chapter 4 is to provide an overview of remote-sensing-based approaches for detailed 
(field-level) annual crop mapping at national scale. First, an overview of the existing approaches based on remote 
sensing used for cropland mapping is presented. This includes a brief overview of supervised image classification 
and pixel- versus object-based classification. Second, the various types of satellite data, ground data and secondary 
data used for detailed crop mapping are discussed. Third, the operational implementation of a national crop mapping 
program is demonstrated with specific reference to Canada’s Annual Crop Inventory. Finally, the main challenges 
and opportunities for crop type mapping at national scales in the future are outlined. The past decade has borne 
witness to several attempts to articulate the spatially explicit requirements of remote sensing data to map cropping 
systems, and, particularly, where, when and how frequently, over which spectral range, and at what spatial resolution, 
data are needed. Elucidating the best data and methodologies for crop mapping remains a high priority on the 
international research agenda. Indeed, several international efforts have been made to achieve a convergence of 
approaches and develop monitoring and reporting protocols and best practices for a variety of global agricultural 
systems (e.g. the GEOGLAM initiative, which includes the Joint Experiment of Crop Assessment and Monitoring 
(JECAM), the Asian Rice Crop Estimation and Monitoring initiative (Asia-RiCE), the Stimulating Innovation for 
Global Monitoring of Agriculture activity (SIGMA), and contributions from the Sentinel-2 for Agriculture system 
(Sen2-Agri)). 

Chapter 5 deals with crop area estimation using remote sensing. The chapter introduces the history of crop area 
estimation, reviewing the evolution from the use of conventional methods to the use of satellite data, with the 
attendant challenges and complexities. The major initial crop area estimation programmes using satellite data, 
such as LACIE and AgRISTARS, are discussed. The various approaches to crop area estimation, such as the Area 
Sampling Frame (ASF), pixel counting, and regression or calibration estimators are described with examples. 
Details of current major programmes for use of remote sensing in crop area estimation are provided under three 
categories: national (USDA-NASS’s CDL and India’s FASAL); regional (the European Commission’s MARS); and 
global (USDA’s FAS, China’s CropWatch and GEOGLAM).The concluding section deals with the major issues and 
limitations in remote-sensing-based estimates and the way forward.
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Chapter 6 reviews the fundamental concepts relating to Early Warning Systems (EWSs) and crop yield forecasting, 
to better address the climatic risks that bear an impact on food security. System-based dissemination of timely 
alerts and specifications of the probability of hazard occurrence are fundamental components of early warning 
information; systematic linkages to early action options and possibilities would go a long way towards saving lives 
and livelihoods. Forecasting crop yields and aggregate production is of significant importance in early warning 
systems that seek to assess the food supply and demand situation of a given country or region. Accurate analyses of 
market conditions, and identifications of the surplus and deficit areas in a country or region will contribute greatly 
to design appropriate policy responses to mitigate food security problems. Robust and accurate agricultural statistics 
are also crucial to achieve such important objectives. In this context, information derived from remote sensing plays 
a vital part in improving the production of agricultural statistics because it is capable of introducing independent 
verifying mechanisms, particularly when area frame or multiple frame sample designs are used. Remotely sensed 
data and information can be introduced at both design and estimator levels.  

Chapter 7 deals with the estimation of forest cover and deforestation from global to national scales using Earth 
Observation technology. Considering the specificities of forestry statistics (permanence of the stands from year 
to year, plot sizes far exceeding pixel sizes, long-term management, availability of management registers in non-
natural forests), a special chapter is dedicated to forest resources and deforestation. The main approaches to the use 
of remote sensing for forest cover assessment and evolution are reviewed, with particular focus on specificities and 
results as shown in the recent literature. After reviewing the background information on the use of remote sensing for 
monitoring forest cover, the Remote Sensing Survey of FAO’s Global Forest Resources Assessment is described, as 
well as other examples of remote sensing surveys used for forestry statistics. Finally, the complementarity between 
estimates of changes occurring in forests and agriculture is analysed.

Chapter 8 presents fundamental requirements and criteria for an organization that is beginning to use geospatial 
analysis and, in particular, remote sensing for producing agricultural statistics. It also elucidates the need for 
resources and the competences necessary for application of remote sensing systems in the contexts of agricultural 
data collection and training needs. Furthermore, consideration is given to the human resources required in the 
multidisciplinary team, its qualifications, size and to the budget required. 

Examples of collaboration between statistical services and mapping agencies are also provided, as well as 
explanations on the importance of close interaction with stakeholders. 

The necessary budgets and business plans are presented.

Finally, Chapter 9 explains how to evaluate the cost-efficiency of remote sensing. Examples are given of past and 
recent uses, showing why and where clear cases of cost-efficiency exist. Based on the current trend for free and open 
access to satellite imagery, agricultural complexity may soon be expected to become manageable with the images’ 
increasing information content (spectral, spatial or textural).
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1
Chapter 1

Data access and data analysis 
software
1.1 Introduction 

This chapter describes the data sets that are relevant for the integration of remote sensing for agricultural statistics. 
First, the remote sensing data sources themselves will be considered. However, the role of reference data and 
ancillary data layers and their use in stratification and aggregation will also be discussed. A key issue in recent 
data access is the general trend towards open access. Thus, while the major commercial remote sensing missions 
are listed for reference, the emphasis will be on open-access sources for a number of reasons: (1) to create wider 
awareness on data sets that are available under free and open licenses; (2) to promote understanding on how these 
data can be accessed; and (3) to discuss how open data can be used to optimize acquisition – that is minimize the 
associated costs – of commercial data. Remote sensing data, both from open or commercial sources, usually require 
preprocessing for follow-up use in statistical analysis. The use of open-source software for image processing and 
geospatial analysis is another important development that will accelerate the take-up of remote sensing data. The 
use of open-source software will be discussed, and a listing of commercial software alternatives will be provided. 
The chapter will conclude with a discussion of the more recent trend to move data analytics into cloud computing 
environments.
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1.2. Relevant sensors and data sets

Remote sensing data for use in agricultural statistics can be sourced from a wide range of sensors. Traditionally, the 
key sources were satellite sensors and airborne instruments. The latter are typically used to create large ortho-imagery 
coverages with a high level of spatial detail (that is, at a resolution higher than 1 m) for topographic mapping, or in 
the generation of land tenure or rural cadastres. The production of aerial ortho-imagery has experienced the rapid 
adoption of digital technology, which enables the improvement and acceleration of ortho-image production from 
stereo-flights. For large coverages, it remains a cost-effective alternative to high-resolution satellite imagery. In the 
United States of America and in many European countries, aerial ortho-imagery coverages are usually accessible 
under open licenses or are integrated as “background layers” in popular geoviewers (such as Google Earth, Google 
Maps or Bing Maps) or Geographical Information Systems (or GIS; for example, ArcMap and Quantum GIS). These 
layers can be used to assist manual digitization, such as in delineating agricultural parcel boundaries or infrastructure. 
Open access to the actual image tiles facilitates more sophisticated uses, such as the automatic ortho-correction of 
other image data sets.

Airborne instruments are also used in specialized surveying applications, for example together with hyper-spectral 
sensors for detailed spectral signature analysis, Light Detection And Ranging (LIDAR) in terrain modelling, or 
advanced Synthetic Aperture Radar (SAR) or other electromagnetic sensing techniques. Airborne platforms have 
the obvious advantages of being easy to configure and deployable on demand. This is even more evident with the 
increasing use of Unmanned Aerial Vehicles1 (UAVs), which combine versatility with lightweight sensor deployment 
for specific and very-high-resolution (VHR) data collection. However, the use of UAVs is more difficult to scale 
to large area coverage. Safety regulations (for instance, line-of-sight operation by a certified operator or maximum 
flight altitudes) may be too restrictive to use these platforms beyond specialized high-value applications, such as in 
precision agriculture. The following sections concentrate on spaceborne remote sensing options. However, when 
designing agricultural statistical surveys, an essential first step is to compile an inventory of the available airborne 
ortho-imagery sets and airborne and UAV data collection capacities in the region of interest that can be used to set 
up the survey. 

The growing availability of Earth Observation (EO) satellite sensors makes it increasingly difficult to identify the 
optimal availability with respect to the design of agricultural statistical surveys. This chapter will focus on satellite 
sensors that have demonstrated potential in land use and land cover classification, parcel delineation and crop 
characterization. The European Space Agency (ESA) has created a useful categorization of the sensor data sets 
available as so-called Copernicus contributing missions2. Sensors are classified into mission groups, which are 
specified by mission type and spatial resolution. The (adapted) mission groups are shown in table 1, together with 
the typology of resolution terms used and examples of currently operational missions3. The description column lists 
each mission category’s advantages and disadvantages for use in agricultural statistics.

In terms of sensor characteristics, a first subdivision may be operated on the basis of whether the sensor operates (1) 
in the visible and infrared spectral domain (multispectral) or (2) in the microwave spectrum (SAR). This distinction 
determines whether imagery can be acquired independent of solar illumination and cloud cover. Multispectral 
sensors measure the reflected sunlight, and as such obviously depend on there being sufficient incident solar 
illumination and absence of cloud cover. This is important not only for instantaneous acquisitions but also for 
the creation of consistent time series, for example to compare data over several crop seasons. SARs measure the 
backscattered radiation from a microwave pulse emitted by the SAR itself, thus independently of solar illumination. 
For lower frequencies (C- and L-band), SARs are usually insensitive to atmospheric conditions, except in case of 

1    An equivalent term often used is Remote Piloted Airborne Systems (RPAS).
2    https://spacedata.copernicus.eu/web/cscda/data-offer/mission-groups.
3   � A full and up-to-date overview of operational satellite sensors is available found at: https://directory.eoportal.org/web/eoportal/satellite-mis-

sions and http://database.eohandbook.com/database/missiontable.aspx.
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intensive rain events. Thus, one of the SAR’s strengths is its capacity to ensure consistency in the acquisition of 
time series for use in crop delineation and area measurement. This is especially true for the Sentinel-1A and -1B 
instruments, which combine a spatial resolution of 10 m with a revisit frequency of six days.

The second subdivision in sensor groups depends upon spatial resolution. The ESA denomination relies upon 
the practical < 4 m, 4–10 m, 10–30 m, 30–300 m and > 300 m resolution ranges to group families of sensors. In 
addition to the difference in resolution, the 10–30 m range also demarcates the division between sensor data that is 
(predominantly) available under free and open licenses and those categories (<10 m) that fall within the commercial 
realm.

Table 1. �Classification of satellite sensor categories, based on the European 
Space Agency (ESA) nomenclature used in the Copernicus programme.

Mission 
group

Resolution Examples Utility in context of agricultural statistics

SAR

High, 4–30 m

Sentinel-1 
Radarsat-2 
ALOS-PALSAR 2 
RISAT

6- to 24-day revisit, C-band (S1, R2) and L-band (ALOS). 
All weather, day and night imaging, including interferometry. 
Free (S1) and fee-based (R2, ALOS, RISAT). 
Contribute to crop delineation and identification (< 20 m 
resolution).

Very high, 1–4 m

TerraSAR-X
CosmoSkyMed 
Radarsat-2 (fine 
mode) 

Multiple sensors, variable revisit (up to daily frequency).
High-resolution but small swath. 
X-band (TSX, CSM) is less suitable for crop identification. 
All can acquire both high- and lower-resolution imagery, 
exclusively. 
Fee-based, expensive. 

Multispectral

High, 4–30 m

Landsat, Sentinel-2
ASTER 
SPOT 6/7
RapidEye
CBERS
IRS LISS
DMC

Free and open access to 10–30 m (Landsat, S2, ASTER), 
with large swath and including Short-Wave Infrared (SWIR) 
channels. 
5- to 16-day revisit or better (e.g. RapidEye). 
SPOT combines 6 m multispectral with 1.5 m panchromatic. 
Suitable for crop delineation, crop type identification and area 
estimates (4–10 m resolution), regional crop occurrence and 
status (4–30 m).

Very high, 0.3–4 
m 

WorldView-3
Pleiades
PlanetLabs
SkySAT
DMC-III

Highest resolution (0.3 m WV-3), variable number of spectral 
bands, in visual and near-infrared (NIR) and SWIR range. 
Entry of new suppliers (e.g. PlanetLabs, SkySAT) is driving 
down (currently steep) prices. 
Suitable for parcel measurement (< 1 m resolution).  

Medium, 30–300 
m

Proba-V
Sentinel-3
MODIS
VIIRS

1–3 days revisit over large swath (> 500 km). 
Including thermal channels (MODIS, VIIRS, S3). 
Composites for periodic trend analysis over large areas. 
Parcel detail typically lost. 
Useful for typification of large production areas and seasonal 
trends, for stratification. 
Free and open access except Proba-V (100 m resolution).

Low, > 300 m
MODIS
AVHRR

Mix of orbiting (MODIS) and geostationary (METOP-2 AVHRR). 
Mostly > 1 km resolution. 
Daily to 15-minute revisit. For radiation budgets, 
meteorological information.  
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The spatial resolution of a sensor determines, to a large extent, whether it can be useful in the context of agricultural 
statistics. Key factors are the nominal size of the production units (crop parcels and grazing areas) and the mappable 
landscape features (tree cover, mixed crops and eligible land use elements) that play a role in statistical estimation. 
As a rule, it is easier to acquire high-resolution imagery over small areas, in terms of both the sensor’s technical 
capacity to acquire timely imagery and the lower attendant costs. For most VHR sensors, a 10 x 10 km2 frame is 
a typical “unit of acquisition”; however, more versatile instruments, such as WorldView and Pleiades, are capable 
of acquiring a number of adjacent frames in a single orbit path (depending on cloud cover). Lower-resolution 
sensors acquire much larger areas (or swaths) per orbit. The swath of Sentinel-2A, for example, is 285 km wide; 
for this swath, the satellite collects four spectral channels at a 10-m resolution, six at a 20-m resolution and three 
at a 60-m resolution (for atmospheric correction). Thus, subsequent frames along the given orbit path can cover a 
significant proportion of a national territory. Low-resolution sensors have an even larger swath, for example, up to 
2 100 km for MODIS; however, such imagery naturally cannot capture detailed landscape features for delineation 
of production areas.

Radiometric resolution gives rise to another subdivision in sensor categories. For multispectral instruments, the 
number of spectral bands and the spectral bandwidth are important parameters. The spectral bands determine which 
parts of the radiative spectrum are registered in the imagery, while the bandwidth sets the specificity of the spectral 
range for which the radiance is measured. For detailed crop characterization, it is generally preferable to have 
many bands (and therefore hyperspectral sensors) with narrow bandwidths. However, sensor design and satellite 
data link transfer rates pose important constraints upon the actual feasibility of acquisition. Many of the (very-) 
high-resolution instruments (SPOT 6/7, Pleiades and SkySAT) tend to combine lower-resolution multispectral 
channels in the visible and NIR range with a higher-resolution panchromatic channel to allow for upsampling in a 
“pansharpening” step during preprocessing. NIR imagery is essential to distinguish vegetation cover from bare soil. 
NIR reflectance is typically highest for fully closed crop canopies.

WorldView-3 currently produces the most detailed satellite imagery, with a panchromatic band having a resolution 
of 31 cm, four spectral bands in the visible and NIR (at 1.24 m), eight spectral bands in the SWIR band (at 3.7 m), 
and 12 additional channels (at 30 m) for atmospheric correction and cloud, snow and ice detection. In the high-
resolution domain, special attention is given to spectral compatibility between sensors (such as Landsat and Sentinel 
2), to facilitate imagery calibration and comparison. At the same time, Sentinel-2 complements Landsat-8 with 
additional channels in the so-called red-edge domain (the 570–720 nm spectral range) and an additional SWIR band. 
The red-edge domain is the spectral region that is highly sensitive to the reflectance of chlorophyll in plant tissue. 
Thus, it can be used to characterize partial canopy coverage and can contribute to the distinction of crop types. The 
often-cited Normalized Difference Vegetation Index (NDVI) is the normalized difference between the reflectance 
in the NIR band (top of the red-edge range) and red spectral bands (start of the red-edge range). Sentinel-2 is the 
first sensor to enable a full analysis of the red-edge spectral range.

SWIR bands are particularly useful when characterizing bare and partially covered soil, canopy senescence and 
stress conditions. Together with bands in the visible range, it can distinguish soil type due to reflectance differences 
in the mineral composition and carbon content. Landsat-8 is unique in its acquisition of Thermal Infrared (TIR) 
band imagery at a high resolution (90 m, resampled to 30 m).

For SARs, the subdivisions in spatial resolution regimes are equivalent to those in the multispectral domain. The 
term “spatial resolution” actually has a different meaning when referred to SARs; however, exploring this distinction 
in detail goes beyond the scope of this handbook. Radiometrically, SARs are characterized by the frequency at 
which they operate and the polarizations at which they can transmit and receive microwave pulses. Satellite SARs 
work in either the X-band (9.6 GHz, TerraSAR-X, CosmoSkyMed), the C-band (5.6 GHz, Sentinel-1, Radarsat-2) 
or the L-band (3.0 Ghz, ALOS-PALSAR-2). These frequencies correspond to wavelengths of 3.2, 5.8 and 10.2 cm, 
respectively. As a rule, the longer the SAR wavelength, the deeper the signal penetrates into vegetation canopies 



Handbook on remote sensing for agricultural statistics 5

(or dry soil surface) and, as a result, the more information can be inferred from the backscattered signal. Thus, 
there is generally a preference for the L-band in crop applications. However, the wide availability of frequent 
(C-band) Sentinel-1 data under the full, free and open Copernicus license makes it the current preferred SAR data 
set. SARs emit coherent microwave pulses, for which both the transmitted and received polarization plane can 
be measured, in terms of both intensity and phase. Fully polarimetric measurements provide more information 
on backscattering behavior (such as that of crops); however, their availability often requires a trade-off with the 
achievable resolution. Sentinel-1 generally provides polarized intensity measurements over land surfaces as a 
combination of vertically transmitted-vertically received (VV) co-polarized and vertical-horizontal (VH) cross-
polarized channels. Interferometry refers to the technique of combining the coherent measurements of two distinct 
SAR acquisitions from the same sensor. Interferometric coherence has some potential to contribute to land use 
delineation; however, its use in the context of agricultural mapping is still rather limited. Interferometric SAR 
(InSAR) processing has been a specialist topic until recently. However, it may gain further relevance with the 
increasing availability of Sentinel-1 data – especially with both Sentinel-1A and Sentinel-1B in orbit – and related 
open-source software modules (see Section 2.2).

For all sensors, the temporal resolution relates to the time density with which repetitive coverages can be combined 
(stacked) to form a multitemporal composition. This resolution is closely related to the satellites’ orbit configuration 
and the possibility to steer and point the sensor along and across the orbit path. Sensors having a very high spatial 
resolution are capable of acquiring imagery from neighboring orbits, achieving up to daily revisit, and even capturing 
multiple acquisitions along the orbit (such as WorldView and SkySAT), thus forming a video-like sequence (which 
however is not particularly useful for agricultural statistics). Fixed-view sensors (as, for example, Landsat and 
Sentinel-2) have a revisit frequency that is fully determined by the sensors’ orbits (for example, 16 and 12 days, 
respectively). Orbits are typically chosen to ensure seamless coverage of the sensor swath at the Equator. This causes 
swaths to overlap on the sides, especially towards higher northern and lower southern latitudes, thus effectively 
leading to a higher revisit in those overlaps. The operation of identical sensors in a constellation of phased orbits 
(Sentinel-1, Sentinel-2, RapidEye and CosmoSkyMed) is another way to increase temporal resolution. For SAR 
sensors, the temporal resolution can be further increased by combining acquisitions from ascending and descending 
orbit passes, due to the active nature of those sensors. 

The categories of low-resolution instruments are of less direct interest to agricultural area statistics. However, they 
generally contribute to wide-area, multiannual phenological trend analysis (see chapter 6). Further categories of 
sensors that are not listed in table 1 include passive radiometry missions, ocean sensors and atmospheric sounders. 
The benefits of these sensors to agricultural statistics are more indirect, for instance, as inputs to global circulation 
models that feed weather forecast models for agrometeorological yield modelling. As such, they are beyond the 
scope of this chapter, but may be referred to in other parts of this handbook. 

It must be noted that the current analysis is limited to state-of-the-art sensors, that is, those currently available 
for operational use either under free and open licenses (Landsat, Sentinel and ASTER) or commercial licenses. 
Many other systems exist that are either non-operational (for example, research and development missions) or that 
are not widely and easily available (such as sensors from national programmes). In addition, there is a common 
risk of overestimating the potential of “the next solution in Earth Observation”, often to the detriment of the 
uptake of existing capabilities. However, the general trend towards “more and better” technology in this domain is 
evident. The miniaturization and decreasing costs of digital space components are already stimulating the market 
entry of new industrial actors (Planet, TerraBella and UrTheCast) and prompting existing players to consider large 
constellations of small satellite sensors with VHR and daily revisit capacities. In the high- and medium-resolution 
range, it is hoped that the increasing number of national programmes (such as China’s space programme, Canada’s 
new Radarsat constellation and Argentina’s SAOCOM will adopt free and open licensing and thus add to global 
monitoring capacities.
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1.2.1. 	 Cost factors relating to commercial imagery 
A practical limitation upon the use of commercial satellite imagery relates to the associated costs. Several factors 
determine the total cost of data use. It is to be noted that, for most sensors, data use is licensed: the customer does 
not become the owner of the data, but rather pays for the right to use the data and derive information therefrom. The 
type of license itself can determine the costs to a considerable degree. For instance, single-use license is generally 
the cheapest, but data sharing may be restricted to a single user or a pre-identified group of users. Multiple-user 
licenses may distinguish between use within the organization only and wider sharing among (groups of) external 
users, with corresponding price increases. 

It is also crucial to understand whether works derived from data analytics – such as classification results and digitized 
features – fall under license restrictions. Until recently, this was the case with most sensors. However, a recent 
and somewhat alarming trend is to introduce “viral” licenses, which are licenses that propagate to derived works, 
especially for the most advanced technological sensors (WorldView and Pleiades). 

Other factors that determine price per unit area are whether the data can be sourced from existing archives or must 
be acquired upon request, and whether the acquisition is to be performed urgently and within a limited timeframe. 
Archive imagery is obviously the most affordable, especially for sensors for which the “shelf-life” is shortest when 
several providers are active in the resolution domain. Good planning avoids the need for urgent data acquisitions, 
which are typically the most expensive. Other factors in determining price are (1) the required technical quality 
of the imagery in terms of spatial and spectral resolution; (2) limitations in view angle range; (3) preprocessing 
requirements; and (4) the total coverage required. For the latter, it is typically relevant to ascertain whether areas 
must be acquired as contiguous coverage or as single units (for example, for a frame sample). It should also be noted 
that for several scene-based sensors, a minimum unit area size may apply. 

An example of a public price list for a heterogeneous set of VHR sensors is given by e-geos4, which provides a good 
overview of the factors discussed above and their effect on the estimated prices. Although prices per km2 range from 
US$ 0.01 to US$ 145 (four orders of magnitude!) for Rapideye NextMap World 30 and WorldView 3 “Select Plus 
Tasking”, respectively, only a fuller understanding of all relevant technical requirements and applicable conditions 
can enable the calculation of a more realistic price estimate for a planned activity.

In general, for projects that require VHR (< 4 m) satellite imagery, it is best to provide several suppliers with the 
full acquisition scenario and technical requirements and then “shop around” for the best offer, as this may make it 
possible to obtain significant discounts on list prices and special conditions that are beneficial to data sharing. For 
such acquisition scenarios, the feasibility studies are typically done free of charge as part of the satellite operators’ 
customer services. Most sensor operators publish their archive holdings through web search interfaces, and there 
have been efforts to harmonize access to common information5. Independent data brokers and resellers offer (fee-
based) services to assist in the selection of the “best economical” data acquisition offers. The 1–4 m resolution 
segment is becoming increasingly crowded on the supply side, which should lead to better customer services and 
greater discounting. For large contiguous coverages, digital airborne sensor operators should also be considered, 
especially since data ownership is typically implied and the cost/quality benefits may exceed those of satellite 
operators. ArcGIS World Imagery6 contains an overview of the VHR imagery available, which is a mix of regularly 
updated satellite and airborne data sets sourced for different areas of the world.

4    http://www.e-geos.it/products/pdf/prices.pdf.
5    https://earth.esa.int/hma/.
6    http://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9.
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1.2.2. 	Free and open access
The introduction of the full, free and open license for the Sentinel sensor data of the European Union (EU) Copernicus 
programme is a vital complement to the United States of America’s efforts to open up EO data sets from government 
sensors, such as MODIS and – in particular – Landsat missions. This shift towards open access to public satellite 
data resources has been emboldened recently, with the opening up of the Japanese/US ASTER sensor data. While 
the main motivation behind this trend is to establish a shared knowledge base for global environmental monitoring, 
open access does have a considerable impact on a wide range of potential applications in agricultural statistics. As 
discussed above, Sentinel-1 and -2 provide a basis to create crop-specific information at map scales of 1:25 000 to 
1:50 000 as a support to statistical survey design studies. Thus, activities in this domain should consider Sentinel 
data as a common basis.

Similar to commercial service providers, open-access sensor operators provide web search interfaces7 that enable 
searching archives for acquired imagery and orbit characteristics to understand revisit capabilities. A key difference 
between open-access operators and commercial equivalents is that in the case of open access, the archive search 
will provide a download link to the full-resolution product. 

Graphical web search interfaces are convenient for occasional searches and downloads. For larger and recurring 
requests, it is often easier to run selections and downloads via scripts. Well-designed search interfaces expose the 
underlying protocols as a set of application programming interface (API) calls8 that can be configured to specific 
selections in time, space and for specific mission metadata tags, and can then be run as scheduled batch scripts. This 
is particularly useful for bulky data sets, such as those of Landsat, Sentinel-2 and Sentinel-1 Ground Range Detected 
level-1 SAR (GRD), which may take up to 1 Gb per scene, and Sentinel-1 SLC (up to 8 Gb/scene). Sample Python 
scripts may be found on the Internet9 or are available upon request to this author. 

A side effect of full, free and open access is that third parties integrate access to these data in their cloud storage 
and processing infrastructures. For instance, Google10 and Amazon11 both download Sentinel-2 imagery from the 
ESA-hosted data access points and then make them available both for free access by all users and for use in their 
respective cloud computing infrastructures. The EU’s Copernicus programme, together with ESA, plans to introduce 
alternative European data hosting and computing infrastructures in the near future. Cloud computing is further 
discussed in the last section of this chapter.

7   � https://scihub.copernicus.eu/dhus/#/home (for Copernicus Sentinel-1 and -2) and http://earthexplorer.usgs.gov/ (for Landsat and ASTER, 
among others).

8    See, for example, https://scihub.copernicus.eu/userguide/5APIsAndBatchScripting.
9    http://www.cesbio.ups-tlse.fr/multitemp/?p=3121 (Landsat) and http://www.cesbio.ups-tlse.fr/multitemp/?p=6419 (Sentinel-2).
10    https://cloud.google.com/storage/docs/public-datasets/sentinel-2.
11    http://sentinel-pds.s3-website.eu-central-1.amazonaws.com/.
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1.3. Image processing and preparing for data analytics

Depending on the sensor type and data processing levels, supplied satellite (or airborne) imagery may require 
preprocessing steps to prepare them for use in subsequent data analytics. Recently, this process has been dubbed 
the creation of “analysis-ready data”. In this handbook, the top-level requirements will be discussed and linked 
to existing software solutions that implement the required functionality. For a more detailed understanding of the 
technical issues involved in each step, readers will be referred to relevant literature. 

At a minimum, supplied satellite imagery can be expected to satisfy a number of basic technical requisites, such 
as consistent registration between different bands in multiband data, radiometric scaling and quantization that 
optimizes for the dynamic range of the sensor over the scene of interest (in other words, absence of excessive 
saturation or range compression) and appropriate bit-depth of the data type (such as byte, (un)signed integer and 
float). Furthermore, image data should be accompanied by metadata that describes image projection, (approximate) 
geolocation, processing levels and parameters that can be used to translate image band values into the physical 
measurements to which they refer, such as reflectance or radiance in multispectral imagery or backscattering 
intensity in SAR. Additional metadata usually provides information on sensor platform attitude (orbit position and 
viewing configuration at time of acquisition), extraneous environmental parameters (solar illumination), calibration 
parameters, and occasionally statistical estimates derived from image analysis at processing time (such as cloud 
cover and missing data estimates). It is good practice to control the presence of these prerequisites upon receiving 
the data, as suppliers will normally repair defects free of charge.

The most common preprocessing steps for multispectral imagery are orthocorrection and atmospheric correction. 
The need for orthocorrection depends on the processing level of the supplied imagery, and may include sensor-
specific correction and terrain correction. The latter requires the use of an external digital elevation model (DEM) to 
georeference the imagery into a consistent map reference. Terrain correction is essential to correct imagery that has 
been acquired with off-nadir (oblique) view angles. Atmospheric correction is necessary to correct for atmospheric 
effects to derive Bottom-Of-Atmosphere (BOA, or the equivalent Top-Of-Canopy – TOC) reflectance from the 
Top-Of-Atmosphere (TOA) reflectance imagery that is typically supplied. BOA (or TOC) reflectance provide 
time-consistent values of the “true” reflectance of the pixel elements making up the raster imagery. For data sets that 
combine multispectral bands with a higher-resolution panchromatic band, pansharpening can be applied to create 
an upsampled “pseudo”-high-resolution multispectral image.

For SAR imagery, the equivalent steps are geocoding and calibration. Calibration converts SAR image band intensity 
values to backscattering coefficients. Due to the side-looking nature of SAR and the specificity of SAR image 
formation in azimuth and range directions, a dedicated geocoding must be applied to compensate for terrain effects 
(in this case too, an external DEM is required). Depending on the intended use, further processing involving 
multilooking and speckle filtering may be required.  

The steps outlined above result in calibrated and georeferenced imagery that is ready for further treatment. In 
technical terms, preprocessing converts supplied imagery from 1A (“raw”) or 1B (system-corrected 1A) levels to 
georeferenced (1C) and calibrated (2A) levels. In some cases, suppliers may be asked to provide Level 2A, usually 
for a fee. Otherwise, dedicated software must be used with the appropriate ancillary data (for example, a suitable 
DEM) to execute these steps. Depending on the intended use, further processing steps may be required, such as 
mosaicking of single scenes into large coverages, time compositing, classification, segmentation, etc. For these 
steps too, suitable software is required.

In recent years, a major trend in image processing has been the increased availability of open source software. 
These range from the relevant Python, Java and C++ libraries for generic image handling, to specific remote 
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sensing toolkits (for example, the Orfeo ToolBox12) and, most recently, the Sentinel-specific toolboxes. These 
are complemented with interactive geospatial visualization and analysis software (such as GRASS13 and QGIS) 
and raster database solutions (PostgreSQL/Postgis14), which extend to the support of spatial web server solutions 
(GeoServer15, MapServer). A basic yet highly versatile library supporting most of these solutions is the Geospatial 
Data Abstraction Library (GDAL16), which builds on lower-level libraries such as PROJ.4 and GEOS. Their 
equivalents in the Commercial-of-the-Shelf (COTS) domain are, among others17, Excelis ENVI/IDL, ERDAS 
Imagine, PCI, and MapInfo and ESRI-ArcGIS. 

The choice between open-source and COTS software may depend on several factors that determine the “cost of 
ownership”, which goes beyond mere purchase and maintenance costs and may include an evaluation of the existing 
knowledge base, training needs, and other considerations. The balance has dramatically shifted towards open-source 
solutions, however, particularly because these are far more successful in integrating the latest developments (such 
as integration into parallel computing frameworks and use of dedicated hardware components such as Graphics 
Processing Units – GPUs), including those in the field of open-access satellite and reference data sets. The most 
widely adopted open-source software benefits from the exponential growth of a user base that excels in terms of 
collaborative efforts to design and implement cutting-edge solutions. Indeed, the development of COTS software 
is now mostly concerned with catching up on open-source solutions. In this regard, it may be interesting to note 
that well over 50 different image and vector data formats exist, most of which have a proprietary (rather than a 
logical) heritage – a fact that is all the more remarkable if compared to the mere three (DOC, PDF and ODT) formats 
available in the far larger user domain of word processing.

1.3.1. 	 An example of processing 
For the Sentinel satellites, ESA supports the development of the so-called Sentinel Application Platform (SNAP18), 
which provides a common architecture for Sentinel-specific processing functionalities. The SNAP software, which 
is Java-based, runs on all types of operating systems. It also supports a wide range of standard processing features 
(such as band arithmetic, vector-image analysis, reprojection, and import/export of multiple formats) which can 
be used either in an interactive mode or at predefined processing graphs on the command line and in batch. The 
Sentinel-1 toolbox (s1tbx) has been instrumental in the growing uptake of Sentinel-1 SAR imagery among the user 
community; SARs have traditionally been considered technically difficult to use, also because essential processing 
routines were only available as proprietary solutions. 

The toolboxes are also excellent educational tools. Although ESA promotes SNAP as open-source software, some 
functionalities (such as Sentinel-2’s sen2cor atmospheric correction module) remain in fact closed code. When 
combined with automated data selection and download, the toolboxes can be chained to process Sentinel-1 and 
Sentinel-2 (as well as Sentinel-3) on demand as required, in a stand-alone fashion (figure 1). This functional model 
can be further expanded into thematic application areas, as occurs for example in the Sen2Agri19 project, the aim of 
which is to release a full processing chain for the use of Sentinel-2 in crop mask production, crop type classification 
and Leaf Area Index (LAI) extraction for large regions. Its use has already been successfully demonstrated in 
countrywide tests in the Czech Republic and Ukraine.

12    https://www.orfeo-toolbox.org/.
13    http://grass.osgeo.org/.
14    http://www.postgis.net/.
15    http://www.mapserver.org/, http://geoserver.org/.
16    http://www.gdal.org/.
17    See http://www.un-spider.org/links-and-resources/gis-rs-software.
18    http://step.esa.int/main/toolboxes/snap/.
19    http://www.esa-sen2agri.org/SitePages/Home.aspx.
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The brief example20 seen below demonstrates a workflow that searches for the Sentinel-1 GRD data frames that 
intersect a location near Kura, Nigeria for the four preceding months. This query will return a set of records formatted 
as XML, which are then saved to the file entitled s1.xml.

wget "https://{USER}:{PASSWORD}@scihub.copernicus.

eu/apihub/search?q=productType:GRD \

AND footprint:\"Intersects(11.769, 8.422)\" \

AND beginPosition:[NOW-4MONTHS TO NOW]&rows=100" -O s1.xml

A valid username and password are required to access scihub, and can be obtained after registration. The records are 
grouped as a feed, the number of entries of which correspond to the individual records for each image that meet the 
selection criteria. Each record has a set of metadata elements that describe format, date of acquisition and ingestion, 
file size, footprint, etc. The two most relevant metadata elements are the link element, to obtain the href attribute 
that provides the download link, and the str element with the filename attribute, which provides a unique filename 
for the downloaded file. XML is best read in a parser21, which can extract the elements and attributes of interest, for 
example to set up a download script. 

<?xml version="1.0" encoding="utf-8"?>

<feed xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/" 

xmlns="http://www.w3.org/2005/Atom">

<title>Sentinels Scientific Data Hub search results for: productType:GRD AND 

footprint:"Intersects(11.769, 8.422)" AND beginPosition:[NOW-4MONTHS TO NOW]</title>

<subtitle>Displaying 9 results. Request done in 0.177 seconds.</subtitle>

<updated>2016-11-08T14:22:56.407Z</updated>

<author>

<name>Sentinels Scientific Data Hub</name>

</author>

<id>https://scihub.copernicus.eu/apihub/search?q=productType:GRD AND 

footprint:"Intersects(11.769, 8.422)" AND beginPosition:[NOW-4MONTHS TO NOW]</id>

<opensearch:totalResults>9</opensearch:totalResults>

<opensearch:startIndex>0</opensearch:startIndex>

<opensearch:itemsPerPage>100</opensearch:itemsPerPage>

...

<entry>

<title>S1A_IW_GRDH_1SDV_20161027T173813_20161027T173838_013679_015EF5_8838</title>

<link href="https://scihub.copernicus.eu/apihub/odata/v1/

Products('aa979434-a766-480d-a269-ba1a6b2b708a')/$value"/>

...

<summary>Date: 2016-10-27T17:38:13.561Z, Instrument: SAR-C SAR, 

Mode: VV VH, Satellite: Sentinel-1, Size: 1.58 GB</summary>

...

<str name="filename">S1A_IW_

GRDH_1SDV_20161027T173813_20161027T173838_013679_015EF5_8838.SAFE</str>

<str name="gmlfootprint">&lt;gml:Polygon srsName="http://www.opengis.net/

gml/srs/epsg.xml#4326" xmlns:gml="http://www.opengis.net/gml"&gt;

   &lt;gml:outerBoundaryIs&gt;

20    This example assumes that a Linux platform is used. Equivalent commands are available for other operating systems.
21    Such as the lxml parser for Python, available at http:/lxml.de.
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      &lt;gml:LinearRing&gt;

         &lt;gml:coordinates&gt;11.997962,7.224397 12.441014,9.497738 

10.932872,9.795840 10.485979,7.535322 11.997962,7.224397&lt;/gml:coordinates&gt;

      &lt;/gml:LinearRing&gt;

   &lt;/gml:outerBoundaryIs&gt;

&lt;/gml:Polygon&gt;</str>

...

</entry>

<entry>

</entry>

...

<entry>

...

</feed>

Using the href and filename attributes, images can be downloaded as follows:

wget "https://{USER}:{PASSWORD}@scihub.copernicus.eu/apihub/odata/v1/

Products('aa979434-a766-480d-a269-ba1a6b2b708a')/\$value" -O S1A_IW_

GRDH_1SDV_20161027T173813_20161027T173838_013679_015EF5_8838.zip

This operation may be performed for each file in the time series.

The Sentinel-1 GRD file contain uncalibrated backscattering intensities organized in the range-azimuth geometry 
of the SAR. To convert this to georeferenced calibrated backscattering coefficients, the S1tbx software can be used 
to set up a processing chain. A convenient feature of the s1tbx is the concept of graphs, which enable the graphical 
drawing of a sequence of processing steps as a workflow (for an example, see figure 1). The graph can then be saved 
as an XML file and applied in a batch process to any other image in the time series, using parameter substitution.

/home/user/snap/bin/gpt /home/user/S1A/10m_Calibrated_Geocoded.xml \

-Pin_file=S1A_IW_GRDH_1SDV_20161027T173813_20161027T173838_013679_015EF5_8838.zip \

-Pout_file=S1A_IW_GRDH_1SDV_20161027T173813_20161027T173838_013679_015EF5_8838.tif
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Figure 1. �SAR processing workflow graph in S1tbx, to generate geocoded 
calibrated backscattering coefficients from Sentinel-1 GRD data sets.

By integrating the Sentinel catalogue search, XML parsing and the scripting of an automated workflow into a single 
workflow, it is easy to set up batch procedures such as crontab jobs, which download and prepare data sets for an 
area of interest in the same tact as the revisit cycle. Figure 2 illustrates a stack of geocoded images for our selection, 
integrated into a QGIS session.

Figure 2. �A geocoded Sentinel-1 backscattering coefficient composite using 
ascending images (relative orbit 132, VV polarization) from 27 July, 9 
September and 23 October 2016 over an agricultural area near Kura, 
Nigeria.  
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The reddish and orange colours outline agricultural areas subject to seasonal variation in the backscattering signature. Sentinel-1 data is 
under the copyright of the Copernicus programme, 2016.

1.4. Reference data

The integration of satellite imagery into the context of agricultural statistical analysis requires access to a number 
of essential reference data layers. These layers are fundamental at the early stage, when survey design and data 
selection are being considered (for example, when deciding upon stratification of the sample, planning of logistics 
for ground survey execution, procurement of imagery with the required resolution and quality, verification and 
validation of image derived indicators, data aggregation to administrative units, etc.). A non-exhaustive list of 
relevant base layers is provided in table 222.

22   � For further details on land monitoring applications, see European Environment Agency, 2013, Note on in-situ data requirements: Update 
of D2.1 – Report on In-situ data requirements, GMES in-situ coordination (GISC) Publication. Available at: http://gisc.pbe.eea.europa.
eu/deliverables/d2.1.pdf/download/en/1/D2.1.pdf?action=view (pp. 121 ff.)
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Table 2. �Relevant reference data layers for preparation of agricultural 
surveys and related EO analysis.

Reference set Minimum scale Comments

DEM
1:100 000 country 
wide

For stratification, image correction. 
Open access to global sets at 30 m (1 arcsec) from SRTM, ALOS-
PRISM, ASTER. 
For use with VHR imagery, larger scales (>1:25 000) are 
recommended.

Digital topography
1:100 000 country 
wide, 1:25 000 for 
survey areas

For survey design, stratification, image registration. 
Linkage to food logistics (transport and storage), and relevant 
agricultural production factors (access to water, irrigation 
infrastructure). 

Land use/Land cover 1:100 000
Stratification and survey design. 
Environmental factors (land conversion, biodiversity, grass- or 
rangeland).

Soil map 1:100 000
Land suitability, production factors, regionally specific production 
patterns, erosion and salinity risks. 

Land registry 1:10 000
Land parcel identification, land tenure, stratification, support to 
image classification, survey design, statistical extrapolation and 
aggregation.

Administrative 
boundaries

1:50 000 Survey design and statistical aggregation.

Aside from data sets such as the global DEMs, the availability of these layers is highly heterogeneous in terms of 
both quality and licensing conditions, or even non-existent, depending on the country or region. Where the scales 
required are unavailable, extracts from smaller-scale global or regional data sets may provide initial estimates; 
however, additional efforts may be required to generate relevant scale maps, especially for important agricultural 
production zones. Actual satellite and airborne imagery may serve as an alternative source to derive reference layers, 
such as digital topography, land use/land cover; however, these require a great deal of resources at the preparation 
stage.

OpenStreetMap23 (OSM) is an open-data initiative aiming to produce a digital map of the world through voluntary 
contributions, using local knowledge, GPS tracks and donated source data. Attributed digital feature data can be 
extracted from the OSM by region or feature type and then integrated in geospatial analysis software. The open-
source QGIS24 software is particularly useful for OSM analysis, as it provides simple interfaces to extract, change 
and upload digitized features.

QGIS has the added advantage of being a versatile tool to integrate imagery and feature data sets and build 
sophisticated geospatial analytical workflows.

23    https://www.openstreetmap.org.
24    http://www.qgis.org/en/site/.
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1.5. Cloud computing

A recent trend, often hailed as the “new Big Data paradigm”, is to move large data storage and processing towards 
cloud solutions. Cloud solution providers provide the hardware infrastructure necessary to run data processing 
algorithms in parallel against large data sets. A key advantage lies in the fact that, because the data holdings and 
processing units are logically close to each other and the data structures and parallelization can be highly optimized 
for the tasks at hand, the overall data analytics can be considerably faster and, therefore, scaled to much larger 
data selections or be increasingly complex in terms of computer resource use. Another important advantage is that 
cloud solution users do not require the hardware solutions required for large data processing themselves. In fact, the 
client platforms that access cloud solutions can remain simple (such as ordinary laptops) and, because the need to 
download large amounts of data is greatly reduced, there is no need to scale up the Internet bandwidth used. Thus, 
cloud computing is a viable alternative in less developed countries, where the maintenance of dedicated hardware 
and software infrastructure may be difficult. 

Some of the drawbacks of cloud solutions relate to the fact that users are no longer in full control of the workflow, 
and that reference and ancillary data and algorithms must be cohosted on the cloud infrastructure, which in turn 
may lead to issues pertaining to licensing, intellectual property rights, and cost issues (relating for example to cloud 
storage and computing capacity). These factors must be considered against the scale of the planned activities, the cost 
of maintaining existing infrastructure and investing in the necessary upgrades, additional expertise and training, etc.

To appreciate the capacities of cloud computing services and compare them with a stand-alone processing solution, let 
us consider a median-sized country, such as the Republic of Korea (the territorial area of which covers approximately 
95 000 km2). Full coverage requires 20 Sentinel-2 tiles (10 Gb per orbit), 13 Landsat-8 scenes (13 Gb per orbit) 
and 16 Sentinel-1 frames (8 descending, 8 ascending, 16 Gb per orbit25). Assuming full operational coverage from 
Sentinel-1A and Sentinel-1B (61 orbits per year) and Sentinel-2A and Sentinel-2B (73 orbits per year), the total 
amount of Level 1A/1C input data is 10*73 (S2) + 13*22 (L8) + 16*61 (S1) = 1 992 Gb (approximately 2 Tb) per 
year. After preprocessing (geocoding, calibration, removing cloud cover in optical data, masking sea surface), a 
data volume in the order of 1 Tb would feed into a country-wide statistical analysis. While this is still a manageable 
amount of data for a stand-alone operational workflow, a non-trivial effort and relatively robust platform would be 
required to systematically download, store and process such information in a timely manner. 

A prime cloud computing solution in the geospatial use domain is Google Earth Engine26 (GEE). GEE provides 
registered users27 with access to most free and open-access data catalogues, including full-resolution MODIS, 
Landsat, Sentinel-1 and Sentinel-2 data, which are stored in Google’s cloud storage infrastructure. Other open-
access raster data resources, such as SRTM DEM at resolutions of 1 and 3 arcsecs, gridded rainfall estimates (using 
Climate Hazards Group Infrared Precipitation with Station data (CHIRPS)), atmosphere modelling outputs of the 
Global Forecasting System, and global land cover or thematic classification outputs are also available as catalogues. 
Raster data is typically available in the format as originally provided by the source (for example, the United States 
of America’s National Oceanic and Atmospheric Administration – NOAA – or U.S. Geological Survey – USGS – or 
the European Union’s Copernicus programme). Such data may include further processed versions, such as Landsat 
surface reflectance, MODIS indices, and spatial and temporal composites. Sentinel-1 data is included as geocoded 
calibrated backscattering coefficients after processing the GRD formatted originals with the Sentinel-1 toolbox, 
which prepares the data for use in analysis. GEE also facilitates integration of feature data sets; however, it has only 
a limited number of rather coarse global sets (for example country borders). However, a GEE user can upload (and 
download) raster and feature sets as private or shareable assets.

25    Approximately 96 Gb per orbit, should interferometric processing be required.
26    https://earthengine.google.com/.
27    GEE is free for non-commercial use.
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A key feature of GEE is the possibility to integrate access to global data sets with programmable processing logic 
that is made available as a library of routines. Core libraries cover standard raster and feature processing tasks 
(such as filters, geometric operators, classifiers and statistical aggregation) that work across arbitrary numbers of 
image bands, time series combinations, multi-sensor compositions, etc. Matrix libraries provide functionalities for 
regression analysis, eigen analysis and (auto)correlation. Users can combine data selections and library functions 
in scripts that define pertinent workflows that can result in a raster output such as a classification result, or that can 
be reduced to a tabular format, such as spatial statistical aggregates. Scripting can be done in a browser interface 
(using JavaScript) or via the Python API. A critical advantage of this approach is that scripts, rather than downloads, 
can be shared among users, as it is generally more resource-efficient to rerun the script than to exchange large data 
volume renderings. GEE can also serve as the back-end to more elaborate (web) solutions, such as FAO’s “Collect 
Earth”28, which aims to the systematic collection and analysis of validation data in the contexts of land use and land 
use change, including agricultural land use.

1.6. Case study

To illustrate the overall concept of remote sensing data integration with reference data to support agricultural 
statistics, an ideal scenario will now be described, in which open access is available to essential data sets of a quality 
that matches, and even exceeds, overall requirements.

In the Netherlands, the Government strongly supports open access to the public data infrastructure, both in a 
legislative sense and in terms of the implementation of suitable technology platforms. The public map support 
service29 facilitates public authorities in publishing their data holdings in a number of open formats. These data sets 
feed into the national geo-register, which, besides providing access to the data itself, supports a number of search, 
viewing and processing solutions, for example through web services protocols. 

The thematic data sets include, among others, digital topography at a scale of 1:10 000, a LIDAR-derived DEM at 0.5 
m spacing, (annual) ortho-imagery at 0.25 m resolution, soil information layers, and large amounts of thematically 
specific layers, including those relating to agricultural production. Agricultural land use is delineated in a parcel 
reference layer, which is part of the Integrated Administration and Control System supporting the European Common 
Agricultural Policy measures. Farmers register their land use annually on the basis of the parcel reference system. 
Both the parcels reference system and the annual land use layers are available (at a scale of 1:10 000) in the national 
geo-register30. The anonymized annual land use declarations are normally available in final form towards the end of 
the year (December), well after the end of the growing season (October YYYY-1 to October YYYY). 

Therefore, while detailed crop statistics can be derived directly from the declaration data, the data sets constitute 
excellent reference material to validate post hoc the potential of remote sensing data mixes in deriving accurate crop 
estimates at various stages of the (preceding) growing season. Furthermore, the excellent quality of the reference 
data makes it possible to test various sampling approaches for collecting in-season crop reference information, for 
instance, as frame or point samples, in the context of “along-the-road” surveys, with or without the support of actual 
remote sensing data. Indeed, the example of the Netherlands can serve as a suitable training suite for a number of 
operational geostatistical experiments.

28    http://www.openforis.org/tools/collect-earth.html.
29    https://www.pdok.nl/.
30    Search for AAN (parcel register) and BRP (annual land use declarations), respectively.



Handbook on remote sensing for agricultural statistics 17

Figure 3. �Overview map of the Hollands Kroon (the Netherlands) municipality, 
overlaid with Sentinel-2 image of 5 July 2016 (band combination 
B8-B11-B4). 

The image is projected in the Dutch national reference coordinate system (RDS, EPSG:28992). Background map data is under the 
copyright of OpenStreetMap contributors 2017. Sentinel-2 data is under the copyright of the Copernicus programme, 2015.

The example discussed here is of a simple classification using GEE. First, all parcels are selected for 2015 for the 
municipality of Hollands Kroon, in the North-Holland province of the Netherlands (see figure 3). This municipality 
includes the Wieringermeer, which is a reclaimed polder, and some surrounding areas. Due to its excellent alluvial 
soil type, the area is intensively used for arable crop production and horticulture. Of the total municipal area of 37 
108 ha, a total of 7 086 parcels covering 27 723 ha are included in the 2015 declarations data. The average size of 
the declared parcels is 3.91 ha (the range being 0.1 to 47.9 ha). 

The relevant parcels are converted to KML format and then uploaded as a Fusion Table to Google Drive, which 
can be included in the GEE script using the Fusion Table’s identification number. The municipality boundaries are 
included in a similar manner. The municipality boundary is used to select imagery from the GEE catalogues for a 
given date range and sensor, with the possibility to limit the search against certain criteria. For instance, it is possible 
to limit the search of optical data with a minimum cloud cover percentage, limit SAR data selection to a particular 
orbit, etc. For high resolutions, it is possible to choose from Landsat-8, ASTER, Sentinel-1 and Sentinel-2. This 
example will focus on Sentinel-2, an early commissioning phase acquisition of which is available for 5 July 2015. 
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Next, a training sample is set up as a selection from the BRP 2015 set. For the purposes of this example, the training 
parcel size is limited to a minimum of 2 ha, to avoid including mixed pixels across parcel boundaries. In addition, 
parcels with oblong shape (those in which the long side is four times greater than the short side) are excluded. This 
is necessary for the Hollands Kroon set, because it includes several parcels of grassland along the inner and outer 
polder dikes, which are thin but very long strips. The training set selection is further limited to crop types that have 
at least 50 parcels in the set. This step is intended to avoid including relatively rare crop types. The selection results 
in a set of 4 473 parcels (covering 24 624 ha). 

Finally, 20 percent of the sample (corresponding to 916 parcels) are randomly selected for training and the remaining 
80 percent (3 557 parcels) are used to test the classification. All of the parameters used in the selection are variables, 
which can be easily changed to rerun the classification with other choices and study the influence of different 
parameter settings.

It is now possible to set up the classifier. To this end, the following bands are selected from the Sentinel-2 image: 
2–4 (visible), 5–7 (red edge), 8 and 8A (NIR) and 11 and 12 (SWIR). It should be noted that some bands have a 
resolution of 10 m (2–4, 8) while others have a resolution of 20 m (5–7, 8A, 11 and 12); however, there is no need 
to carry out any explicit resampling to prepare the imagery. As the classifier, the random forest classifier is selected, 
using 10 initial trees per class as the only parameter. The classifier is trained with the selected samples and the 
training result is then applied to the image bands. For each test parcel, the frequency histogram of the class label 
that are contained within each parcel boundary is extracted, and the parcel is assigned to the majority class. It is then 
possible to generate a parcel-based (that is, not pixel-based) confusion matrix, as in figure 4.

Figure 4. �Confusion matrix for random forest classification of Sentinel-2 
image of 5 July 2015 for Hollands Kroon, using BRP 2015 declaration 
data for training and testing.

Crop labels: ALF = alfalfa; CRT = carrots; GRA = grass; HOR = horticulture; MAI = maize; ONI = onions; POT = potato; SBT = sugar beet; 
SWH = spring wheat; VEG = vegetables; WWH = winter wheat. 
Classification labels: PA = producer accuracy; UA = user accuracy; OA = overall accuracy.

       ALF   CRT   GRA   HOR   MAI   ONI   POT   SBT   SWH   VEG   WWH    Totals   UA

ALF     14     0     1     0     1     0     3     0     0     1     0        20   0.70

CRT      0     9     0     0     1     9     0     0     0     2     0        21   0.43

GRA     15     3   942     3     8     0     6     1     2     3     0       983   0.96

HOR      8    28    17   586    12    31    10     3     1    95     3       794   0.74

MAI      0     3     2     2   163     4     5     0     4     5     1       189   0.86

ONI      1     2     0     6     3    99     1     4     0    11     0       127   0.78

POT     31     4     5     9     1     0   571     3     0     6     0       630   0.91

SBT      1     1     0    12     0    10     2   232     0     7     1       266   0.87

SWH      0     0     1     0     2     0     0     0    50     0     9        62   0.81

VEG      2     1     0     8     1     0     1     0     0    12     0        25   0.48

WWH      0     0     1     0     1    10     0     0    14     0   403       429   0.94

Totals  72    51   969   626   193   163   599   243    71   142   417      3546   OA = 0.87

PA    0.19  0.18  0.97  0.94  0.84  0.61  0.95  0.95  0.70  0.08  0.97               
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It may be noted that relatively good results may be obtained with an overall accuracy of 87 percent for 11 distinct 
crop types, although only a single Sentinel-2 image is used. Early July is evidently a near-optimal date on which 
delineate several crop types. At this stage, winter cereals are near harvest, contrasting as senescent canopies with 
the fully emerged summer crops of sugar beet and potato. Grassland is also well delineated, although considerable 
variation might be expected in grassland due to varying mowing practices. Horticulture crops are an exception 
because the majority of this group comprises tulips and other spring flower bulbs, which are typically harvested at 
the end of June. Confusion is evident for crops such as onions, carrots and other vegetables (that are mixed with 
horticulture) and spring wheat (that is mixed with winter wheat). Additional optical imagery from before and after 
July will help to delineate these groups.

While the results prove the potential of Sentinel-2 imagery for crop map generation, the key outcome illustrated 
by the above example is that it is relatively simple to generate consistent results with GEE. With reference to 
the example, it is perfectly possible to generate similar results with open-source software alternatives, such as a 
combination of Python scripts and the open source software modules discussed earlier. The main advantage of using 
GEE is the ability to change to other image selections, for example Landsat-8 and Sentinel-1 stacks (and hybrid 
mixes), select other areas and test different parameter settings with minor adaptations to the script. Typically, the 
use of Sentinel-1 stacks is preferred for classification, because data availability is systematic (there are no cloud 
cover issues) and overall classification accuracy exceeds 90 percent for arable crop production areas with similar 
characteristics as Hollands Kroon. 

1.7. Conclusion

This chapter has sought to explore the availability of imagery for use in crop delineation and characterization 
processes to support crop area estimation, with an emphasis on free and open-access high-resolution imagery, 
especially from the new Sentinel-1 and 2-sensors. These sensors, combined with those of other free and open 
sensors, such as Landsat and ASTER, facilitate new approaches in crop area estimation that combine wide-area 
coverage at a resolution of 10 m with select VHR imagery from airborne operators and commercial satellite vendors 
for statistically sound sampling. Generally, software to support analysis of this imagery for the generation of crop 
classifications and area estimates is now easily available in the open source domain. However, given the large 
volumes of free and open-access imagery that are now being generated, practical considerations on Big Data 
processing must be taken into account, depending on the scale of the actual analysis. GEE is an attractive cloud-
based platform for rapid data exploration and analysis, because it already hosts free and open-access imagery and 
provides a rich set of libraries for sophisticated geospatial analysis. Although it is not open-source, it supports a 
large community of developers and users who share scripted analysis in the same manner as in open-source-software 
communities. Future developments are expected to further stimulate cloud-based analysis and will probably include 
fully open-source solutions.
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Chapter 2

Land cover mapping and monitoring 
Pierre Defourny

2.1. Introduction 

Today, there are several ways to describe land surface in light of the unprecedented developments in information 
technology (IT) and observation capabilities, ranging from the introduction of Unmanned Aerial Vehicles (UAVs) 
to the creation of in-orbit Earth Observation (EO) platforms. Satellite remote sensing is an undisputed source of 
land information for a vast range of users at all geographical scales. The gap between remote sensing data producers 
and map users is increasing, enhanced by the fact that spatial data infrastructures are making a great volume of 
geographic information widely available; therefore, it is important to understand the various concepts and constraints 
underlying land cover mapping in the context of agricultural statistics. This is particularly critical in light of the 
fact that in agricultural surveys, land cover maps are often used to support stratification at the sampling design 
level. Indeed, simple cropland maps or more specific maps depicting cropping intensity can significantly reduce 
the sampling variance or the ground sampling effort and associated costs.  

Land cover maps can highlight the non-agricultural strata that are not to be sampled or the strata that could be sampled 
differently. As illustrated by Delincé (2015)1, if a non-agricultural stratum covers one third of the administrative area 
of interest, the reallocation of the entire sample to the remaining strata – including cropland areas – will provide a 
relative stratification efficiency of 1.51 at almost no cost2. The efficiency of stratification clearly depends on the 
relevance of the land cover map selected for the stratification. 

This chapter introduces the concept of land cover and reviews some key elements of the land cover mapping process, 
as organized according to a standard workflow (figure 1). The first steps of this process consist in the selection 

1   � GSARS. 2015. Technical Report on Cost-Effectiveness of Remote Sensing for Agricultural Statistics in Developing and Emerging Econo-
mies. GSARS Technical Report: Rome. Available at: http://gsars.org/en/technical-report-on-cost-effectiveness-of-remote-sensing-for-agri-
cultural-statistics-in-developing-and-emerging-economies/. Accessed 9 August 2017.

2   � Without stratification, the variance of the mean will be ?2/(2/3)*n, such that 33 percent of sample size is lost in a region without crops. 
With stratification, the variance will become ?2/n, such that the relative efficiency is Er= {?2/(2/3)*n}/{?2/n} =3/2 =1.5

2
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of the appropriate land cover typology, the collection of the in situ data and the acquisition of the remote sensing 
imagery. The digital exploitation of these satellite images requires a sequence of standard operations to be completed 
carefully, and thus derive an accurate land cover map. As land cover maps are readily available for some regions, 
the relevance of existing maps to agriculture will be discussed systematically on the basis of a set of well-defined 
criteria. While land cover maps supporting stratification generally refer to previous years, this chapter also reports 
more recent experiences that enable the production of maps during the current growing season. 

Figure 1. �Workflow for land cover mapping from satellite observation time 
series. 

Dashed lines correspond to alternative pathways
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2.2. The concept of land cover 

Historically, land use is considered more relevant for many applications other than land cover; however, the latter 
has been elected into a sort of universal panacea for land inventories, due to its reliance upon direct observation and 
the growing availability of satellite imagery.  Land cover is used as a surrogate to describe the structure and character 
of the landscape by an increasing number of users who may be unaware or ignorant of the origins and semantics of 
land cover information. Comber et al. (2005a) demonstrate that land cover is perceived differently according to the 
discipline involved. If users do not fully understand the meaning of land cover and the assumptions underpinning 
it, then they impose their own interpretations of what land cover should encapsulate, relative to their constraints, 
focus and objectives – an imposition that may affect their assessment of the data and their subsequent analyses. 

The real land surface world is infinitely complex, and any interpretation of EO data involves processes such 
as abstraction, classification, aggregation and simplification. For several decades now, there have been different 
opinions on what land cover is and how it is distinct from land use. As land observation has no agreed fundamental 
unit, land cover mapping must be understood as a process of information extraction that is governed by rules 
grounded in individual or institutional objectives. Most of the major land cover mapping initiatives have created 
their own classification system, described in great detail. At the very beginning of the satellite observation era, the 
U.S. Geological Survey (USGS) established a standardized land use and land cover classification system based 
on 40 years of experience with mapping from aerial photographs (Anderson et al., 1976). This is considered to be 
one of the most influential works in the area of developing national standards to serve various agencies. With the 
increasing expectations of users, the ever-growing data availability and the large diversity of purposes and contexts, 
the efforts to document land cover typologies is still very much necessary around the world.  

2.2.1. 	Land Cover Classification Systems (LCCS and LCML)
To ensure full interoperability between typologies and provide common grounds for describing land cover, the 
Food and Agriculture Organization of the United Nations (FAO) developed the Land Cover Classification System 
(LCCS) as a conceptual framework for legend definition. Through a dichotomous modular-hierarchical system 
based on several sets of descriptors, namely the classifiers, the FAO-LCCS tool aims to explicitly clarify each land 
cover class, and therefore enables translating from one typology to another (Di Gregorio and Jansen, 2000). The 
system is based on independent and universally valid land cover diagnostic criteria, rather than on a predefined set 
of land cover classes. Its output is a comprehensive land cover definition, regardless of mapping scale, land cover 
type, data interpretation method or geographic location (Di Gregorio, 2005). 

More recently, the LCCS framework has been modified into the Land Cover Meta-Language (LCML), to improve 
its flexibility with unbounded classifiers and a richer class description. Since 2012, the LCML framework proposed 
by FAO has been adopted as an international standard by the Technical Committee of the International Organization 
for Standardization (ISO)3. The LCML is an object-oriented classification system in which each land cover feature 
is characterized by a series of elements that can be further detailed by a set of attributes. The class meaning is no 
longer related to a simple class name, but rather to a more exhaustive and modern model populated by the elements 
and attributes characterizing the features of the land cover. Latham and Rosati (2016) provide further information 
on the subject4.

3   � The LCML was adopted as ISO standard ISO 19144-2:2012: http://www.din.de/en/getting-involved/standards-committees/nabau/stand-
ards/wdc-beuth:din21:155452459/toc-1911111/download.

4  �  Latham, J. & Rosati, I. 2016. Land Information in the Context of Agricultural Statistics. GSARS Technical Report GO-15-2016. Available 
at: http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-Context-of-Ag-Statistics-180816.pdf. Last accessed on 
10 June 2017.
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For the sake of clarity, transparency and intercomparison, it is internationally recommended to use the LCML 
framework to define any given land cover typology prior to conducting any mapping effort. For instance, the 
recent land cover Globland30, which was delivered in 2014 thanks to highly intensive and comprehensive efforts, 
poorly defined the land cover classes related to agriculture; this seriously curtailed its use for many agriculture and 
livestock applications.

2.2.2. 	Agriculture in land cover typology
In the context of agricultural statistics, the stratification definition used for the sampling design relies primarily 
on the land cover classes related to agriculture. It is noteworthy that cultivated land is not, strictly speaking, a land 
cover class, but rather a land use class5.  For example, the land cover of a cereal field is more precisely a dense 
herbaceous vegetation, while only its land use should refer to agriculture or cropping activity. However, all existing 
land cover typologies integrate agriculture-related classes because of their importance for the landscape structure 
and for map users. 

While agriculture may at first seem to be the easiest ‘land cover’ class to map for, this is a major source of 
misunderstanding and discrepancies between existing land cover maps, even when simply considering cropland 
and no cropland. This situation is exacerbated when considering the vast diversity of agricultural lands throughout 
the world, from double-cropping rice fields in Asia to the Mesoamerican traditional milpa intercropping system, 
from the European fallow lands to African perennial plantations such as cacao under the forest canopy.

The World Program for the Census of Agriculture 2020 (WCA 2020; Vol. 1, p. 82) proposes the following 
definitions6, obtained by aggregating LCML classes: 
•	 Arable land is land that is used in most years for growing temporary crops. It includes land used for growing 

temporary crops during a twelve-month reference period, as well as land that would normally be so used 
but is lying fallow or has not been sown due to unforeseen circumstances. Arable land does not include land 
under permanent crops or land that is potentially cultivable but is not normally cultivated. Such land should 
be classified as “permanent meadows and pastures” if used for grazing or haying, “forest and other wooded 
land” if overgrown with trees and not used for grazing or haying, or “other area not elsewhere classified” if it 
becomes wasteland.  

•	 Cropland is the total of arable land and land under permanent crops.  
•	 Agricultural land is the total of cropland and permanent meadows and pastures.  
•	 Land used for agriculture is the total of “agricultural land” and “land under farm buildings and  farmyards”. 

Based on the LCML framework, Di Gregorio (2013) established a precise and comprehensive cropland nomenclature 
to define cropland. However, in the context of agricultural statistics, the definition may raise additional questions, 
such as the fact that the cultivated area of interest is neither the sowed surface nor the harvestable one, but rather 
the area actually harvested. This is not only a semantic discussion for researchers, as the differences can be large 
in case of drought or floods.

5    See http://faostat.fao.org/beta/en/#data/RL for agriculture land use statistics reported by the countries.
6    WCA 2020, Volume 1, p. 82.
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Other than this important discussion, the land cover typology must be workable and compatible with the source of 
data. For satellite remote sensing, the Joint Experiment for Crop Assessment and Monitoring network (JECAM)7 
endorsed a definition for annual cropland due to the annual nature of the Earth Observation time series:

“the annual cropland from a remote sensing perspective is a piece of land of minimum 0.25 ha 
(min. width of 30 m) that is sowed/planted and harvestable at least once within the 12 months 
after the sowing/planting date. The annual cropland produces an herbaceous cover8 and is 
sometimes combined with some tree or woody vegetation9.”

The focus on annual cropland is more precise from a mapping point of view, and enables dealing with inter-annual 
changes of land cover, due for example to cropland extension or the abandonment of cultivated lands.

It is important to note that the definition adopted by JECAM also includes the concept of the Minimum Mapping 
Unit (MMU), which defines the smallest unit to be considered in the mapping process. For example, the mapping 
process of the EU’s CORINE Land Cover Database was initially set at 25 ha, thus considering only landscape 
features larger than 25 ha. Such a specification may lead to the discarding of small fields scattered in an urban or 
forest landscape, which may induce a significant bias in the resulting agricultural land map.

2.2.3. 	Alternative approaches for land characterization
Other initiatives, driven by well-targeted objectives, focus on the delivery of single land cover class products or 
binary masks. For instance, the global croplands extent was derived from multi-year 250-m MODIS time series using 
a set of 39 metrics to depict cropland phenology and to derive a global per-pixel cropland probability layer using a 
global classification decision tree algorithm (Pittman et al., 2010). Hansen et al. (2013) obtained a bare soil/no bare 
soil map at global scale by processing the full archive of Landsat data since 2000 for its tree cover product. All of 
these initiatives offer the advantage of providing a map product that is focused on the land cover class of interest. 
Conversely, a major drawback is the absence of any concern for complementarities between products, which may 
lead to significant spatial inconsistencies or semantic incompatibilities. 

The European Copernicus programme produced five separate layers (so-called High-Resolution Layers) of 
information, corresponding, respectively, to forest, grassland, permanent water, impervious surfaces (mainly built-
up areas), and wetlands. Such an approach proceeds specifically on a given landscape feature, thus simplifying the 
data interpretation process. On the other hand, the spatial complementarity between these separately produced layers 
can only be worked out subsequently as an additional step, and it is not yet possible to obtain a comprehensive land 
cover map.

Reducing the diversity of land features into a finite number of classes predefined by land cover typology is always 
a challenge in complex landscapes. As described by Defourny and Bontemps (2013), an alternative strategy was 
proposed to describe vegetation in terms of continuous fields (Smith et al., 1990; DeFries et al., 1995). This 
approach, also known as the continuous fields approach, consists in mapping the respective fraction of the basic 
components of the land surface, for instance to represent the percentage of bare ground, herbaceous and tree cover 

7    www.jecam.org.
8   � The herbaceous vegetation expressed as fCover (fraction of soil background covered by the living vegetation) is expected to reach at least 

30 percent while the tree or woody (height > 2m) cover should typically not exceed an fCover of 20 percent.
9   � There are three known exceptions to this definition. The first concerns sugarcane and cassava, which are included in the cropland class 

although they have a longer vegetation cycle and are not planted on a yearly basis. Second, taken individually, small plots such as legumes 
do not meet the minimum size criteria of the cropland definition. However, when considered as a continuous heterogeneous field, they 
should be included in the cropland. The third case is that of greenhouse crops, which cannot be monitored by remote sensing and are thus 
excluded from the definition.
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for each pixel (Hansen et al., 2005). Continuous fields are usually obtained using a regression tree algorithm that 
matches a continuous and dense training data set covering the whole range of vegetation cover and a large set of 
multitemporal metrics based on a full time series data set. The properties of continuous fields of vegetation are such 
as to offer advantages over traditional discrete classifications, because they enable a more precise representation of 
heterogeneous areas by depicting each pixel as proportions of cover types. In this respect, this approach is appealing 
and relevant for many natural and semi-natural landscapes. On the other hand, these products were found to be rather 
difficult to validate, due to the absence of an appropriate reference data set and to the fact that they leave users to 
define the specific thresholds for converting this continuous products into usable maps.  

Similarly, the retrieval of biophysical variables from satellite time series also results in a quantitative description 
of the land surface thanks to empirical regression or to physically based model inversion. Indeed, remote sensing 
products corresponding the Leaf Area Index (LAI), the fraction of Absorbed Photosynthetically Active Radiation 
(fAPAR), albedo, etc. provide direct estimates of undisputable variables that can also be measured on the ground. 
The seasonal evolution of these biophysical variables can characterize the land surface, and can sometimes be 
interpreted in agricultural land cover classes of interest or directly used for stratification. However, the capability 
to identify these biophysical variables from high-resolution, free and open-access satellite imagery, such as that 
provided by Sentinel-1 and Sentinel-2, has developed only very recently. The time series available for years at coarse 
spatial resolutions (250 m to 1 km) are only useful for stratification purposes in certain agricultural landscapes, 
which either have very large field sizes (as typically occurs in Argentina, Ukraine, the United States of America, 
Russia, etc.), or with uniform and non-fragmented landscapes comprising many small but similar fields cultivated 
according to a same crop calendar (as for example in the North China plain or in case of irrigated rice plains).

2.3. Land cover mapping production

Building upon the increasing availability of Earth Observation satellite data, land cover mapping from spectral and 
temporal signatures has progressively become one of the most popular approaches to describe land surface. Different 
regions of the world have been mapped and characterized several times, either by national agencies on a routine 
basis or by international programs (Africover, SERVIR, CORINE Land Cover, etc.), while a number of global land 
cover maps have been made available with resolutions ranging from 30 m to 500 m. 

Chapter 1 of this handbook reviews in detail the various data sources, their evolution and the emergence of new 
processing environments. The availability of online access to high-speed computing capabilities, along with open-
access and free, analysis-ready data time series greatly facilitates the production of land cover map at national scales 
much more accessible, even compared to only a few years ago. It is, however, important to highlight the conceptual 
and methodological gaps between the existing classification methods, which are designed to proceed scene by scene 
or to interactively process a certain number of images over a limited region of interest (local to national), and the 
automated processing chains that are capable of exploiting all images acquired over a large area of interest (national 
to regional or continental).

This section systematically reviews the key elements involved in land cover mapping, to help assess the quality 
of existing land cover maps and support an appropriate design of land cover mapping initiatives at national scale. 
The intention is to provide an overview of all aspects to consider, rather than to explain specific remote sensing 
methods.  The following chapters of this handbook provide more details on these elements, focusing on particular 
applications, such as crop type mapping. 
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2.3.1. 	Remote sensing data 
The selection of the data source strongly constrains the quality and the spatial detail of the mapping output. In 
addition to data cost and accessibility as reviewed in chapter 1, the optimal trade-off for land cover mapping should 
be based on four main criteria, seen below and summarized in table 1:
1.	 The spatial resolution – or more precisely the Ground Sampling Distance (GSD) of the instrument characterized 

by its point spread function – defines the smallest land feature to be detected and subsequently possibly mapped. 
It is of paramount importance that the spatial resolution be smaller than the size of most of the agricultural parcels 
to obtain a sufficient number of pure cropland pixels. However, the most appropriate spatial resolution to use 
in mapping the cultivated lands also depends on the landscape fragmentation, the diversity of crop types and 
their spatial distribution; for instance, small but similar adjacent fields of a same crop type can be considered 
as a very large field if the crop developments are relatively synchronized. While it may be of interest to capture 
linear landscape features such as hedges, tree alignments or rural roads, this information is not strictly necessary 
for landscape stratification. It is important to note that higher spatial resolution is not always a better option to 
when running digital image processing. Improving the spatial resolution exponentially increases the data volume 
and the relevant computing requirements. For example, an upgrade from a resolution of 30 m to a resolution 
of 10 m multiplies the data storage by 9. Furthermore, while it is easier to visually interpret an image when its 
spatial resolution allows capturing landscape elements such as trees or houses, this does not hold true for more 
automated digital image processing chains. Further investigating this issue, Duveiller and Defourny (2010) 
propose a conceptual framework to adjust the spatial resolution to a given agricultural landscape field size. 

2.	 The frequency of valid cloud-free observation is the second most important criterion for mapping agricultural 
landscapes accurately. Indeed, the seasonal dynamics of agricultural lands are only captured with a dense time 
series of cloud-free observation. A given revisit cycle of an EO system provides very different temporal densities 
of useable observation depending upon cloud occurrence. Therefore, discriminating between the different types 
of agricultural land requires consideration of the effective frequency of valid images for the growing season, 
rather than the revisit capability alone (Whitcraft et al., 2015).  In heterogeneous landscapes, capturing the 
entire seasonal profile of the field signature enables distinguishing between the different cultivated lands, such 
as between permanent meadows, natural grasses and cereals, which may all have very similar appearances for a 
long period of the growing season. There are constellations of satellites that are equipped with inter-calibrated 
instruments and can provide competitive options to increase observation frequency using high spatial resolution. 
In cloudy regions, SAR sensors such as Sentinel-1 or Radarsat-2 may be the best option to ensure a dense time 
series of observation, as the microwave bands are not affected by most atmospheric perturbations or by clouds.

3.	 The number of spectral bands and their position along the electromagnetic spectrum is another important 
criterion, not only for land cover discrimination but also for atmospheric haze correction haze detection and 
efficient cloud and cloud shadow screening. Today, narrow visible and NIR bands are available for most Earth 
Observation satellite platforms; ideally, these are complemented with SWIR bands, which are also very useful 
to discriminate land cover types. Conversely, cloud detection remains a challenging issue.  Except for MODIS, 
Worldview-3 and Sentinel-3OLCI, none of the existing sensors possesses the appropriate spectral bands on 
the same platform to deal with all aerosols and cloud types, and their confusion with snow and ice. Highly 
popular satellites, such as Landsat-8 and Sentinel-2, both have a nice set of bands – including an efficient cirrus 
band – to screen out atmospheric perturbations. However, their operational use continues to face limitations in 
some regions. Many other sensors are found to be problematic when obtaining consistent time series over large 
areas, due to atmospheric perturbations of signals that are difficult to detect and to correct.   Such corrections 
are necessary if it is sought to combine in a single image (that is, a composite or a mosaic when only one 
observation per pixel is available) pixel values captured on different observation dates or different sensors to 
attain a seamless, cloud-free image. On the other hand, cloud-free observations over large areas that are well 
distributed over the season may not require atmospheric correction for their classification and could be sufficient 
for the purposes of land cover mapping.  



Handbook on remote sensing for agricultural statistics28

4.	 Wide swath sensors cover very large areas in a single overpass (290 km for Sentinel-2, 650 km for DMC 
satellites, and more than 1 200 km for coarse instruments such as MODIS, Sentinel-3 OLCI and PROBA-V). 
Therefore, swath width is also a criterion in large-scale application. While smaller images can still be stitched 
together to form mosaics, they require performing atmospheric correction if they are to be combined in a 
seamless imagery or in a mapping output consistent over large area. Sensors with a narrow swath (typically 
approximately 50 km or even below 20 km, for satellites having very high spatial resolution (VHR)) tend to cover 
large areas by mosaicking small images acquired from different viewing angles. Due to the so-called bidirectional 
reflectance distribution function, such a viewing angle variability may induce spectral signature differences for 
a given land surface, which would make the classification process much more challenging.

Table 1. �Criteria supporting the selection of appropriate remote sensing data 
sources.

Criteria Spatial resolution Valid obs. frequency Spectral resolution Swath size

Rationale
Matching the size of the 
landscape elements 

Temporal profile along 
growing season 

Land cover discrimination 
Cloud screening

Seamless image over 
large area

Variable 
according to

Parcel size distribution 
and fragmentation

Cloud persistence 
Land cover diversity
Haze and cloud cover 
frequency

Country size

An additional criterion to select the data source is the level and the quality of data pre-processing. Increasingly, 
data providers deliver ready-to-use or ready-for-analysis imagery including state-of-the-art radiometric calibration, 
orthorectification, atmospheric correction and cloud and cloud shadow screening. Otherwise, a pre-processing chain 
must be implemented to convert the radiance signal recorded at the top-of-atmosphere to bottom-of-atmosphere 
multispectral reflectance. The only advantage of in-house pre-processing is that some algorithms may be fine-tuned 
to the area of interest (local availability of better atmospheric information, better DEM, etc.) or that certain more 
advanced processing steps may be included, such as topographic correction, which is useful wherever significant 
areas are cultivated in mountainous or hilly regions.

2.3.2. 	In situ data collection
In addition to satellite EO imagery or time series, land cover mapping always relies at least on another source of 
information to support the classification process (either by training the classification algorithm a priori or to label 
the output classes a posteriori), and to assess map quality.  

The two main purposes of the in situ data collection are referred to as algorithm calibration and output validation 
(figure 1). The calibration data set supports the training of EO data classification algorithms to generate, for instance, 
a land cover map, a cropland mask or even a crop type map. The requirements for collecting an appropriate 
calibration data set are examined in detail in section 2.2.3. 

Instead of in situ data, Matton et al. (2015) and Desclée et al. (2006) have developed specific methods to use   existing 
obsolete land cover maps as a priori information to train classification algorithms and to produce a cropland mask 
and a forest mask, respectively.  Alternatively, unsupervised classification algorithms do not require a calibration 
data set; they require a labeling data set, which can consist either of in situ data or of existing obsolete maps, as first 
implemented in the GlobCover project (Defourny et al., 2006). 
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On the other hand, the validation data set is necessarily a high-quality reference data set, to be used as so-called 
ground-truth to assess the accuracy of a land cover map. Validation should never be confused with the intercomparison 
of maps; this process quantifies the discrepancies between the maps, but cannot rigorously attribute errors to one 
or the other. 

Field data collection is a resource-intensive and time-consuming activity, particularly if it is sought to cover large 
areas. While sampling theory should define the design, logistic and resource constraints impel identification of the 
optimal trade-off in terms of performance and cost-efficiency. Some basic principles and figures to guide potential 
map producers and assess map quality are provided further below in this section. In some countries, up-to-date 
agricultural Land Parcel Information Systems provide a comprehensive ready-to-use set of reference data. In others, 
field surveys may be impossible for security reasons or due to lack of physical access to the territory.

Training data sets and validation data sets may also be collected by on-screen delineation based on visual and 
interactive interpretation of multispectral colour composites. Very high spatial resolution images made available 
on line by Google Earth, Bing, and similar geoportals, are often used for digitizing polygons instead of ground 
data.  The acquisition date of these images displayed on geoportals can be very diverse and does not necessarily 
correspond to any given year of observation. This is therefore quite efficient for the most stable land cover types 
but should not be used for crop type for instance as they might change annually. As experimented for GlobCover 
validation (Defourny et al., 2012b), the reliability of the interpretation based only on VHR imagery depends largely 
on its observation date – a factor that is beyond the control of the interpreter.  The interpretation of VHR images 
is efficiently augmented by the NDVI temporal profiles provided for the corresponding pixel, as proposed by 
the European Space Agency (ESA) CCI Land Cover interface, which covers the entire world10.  More recently, 
several crowdsourcing initiatives have demonstrated that citizen mobilization to collect large amount of data about 
agriculture or land cover is possible, as seen on programmes such as Google Earth. Geowiki (Fritz et al., 2015) 
and Collect Earth11 are online applications that guide the visual interpretation of a massive number of non-expert 
individuals, sometimes through gamification and assuming that the quantity of information somehow also eventually 
leads to its quality.  This is a very active field of research, and a number of worldwide experimental applications 
have been already proven to be more or less successful. 

Calibration 
The sampling objective for the calibration data set is to encompass the entire diversity of situations existing in 
the region of interest (for instance, the national territory) to represent the range of possible spectral and temporal 
signatures. To produce an agricultural land mask delineating cropland versus non-cropland, all land cover types 
must be included in the calibration data set. Otherwise, the non-documented land cover types are allocated to the 
cropland or non-cropland class in an uncontrolled manner.   

The samples are targeted to establish the necessary links between a given landscape type (wetlands, urban area, 
water, etc.) and the existing range of corresponding spectral and temporal signatures. Unlike the case for validation, 
which should follow a rigorous sampling design, various types of sampling strategies are acceptable for calibration, 
as long as they are fairly distributed across the territory to capture the full variability of each land cover type. 

To cover this diversity and the agroclimatic gradients often observed over large areas (for instance, a national 
territory), it is recommended to stratify the landscape according to the interactions between agro-ecosystem types, 
crop type distribution, cropping calendars and overall biophysical contexts (floodplain, mountainous areas, etc.). 
Such a form of stratification, here called Agro-Ecological Zoning, already exists in many countries. As a rule of 
thumb, a limited number of zones should be considered, ranging typically from 3 to 12 zones for a country extending 

10    http://maps.elie.ucl.ac.be/CCI/viewer/.
11    http://www.mdpi.com/2072-4292/8/10/807/html.
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over approximately 500 000 km², to ensure that there are enough training samples for all the classes in each stratum 
and that the sampling remains manageable. 

As described in the JECAM guidelines (2014) for non-agricultural land cover classes, a visual interpretation of 
existing imagery on geoportals can be very efficient to define at least 15 land cover training samples per class and 
per stratum, in particular for remote areas and areas with low rates of land cover change. As explained above, the 
visual interpretation of available up-to-date aerial photographs or VHR imagery is advantageously supplemented 
by temporal information such as NDVI profiles, to capture the diversity of the non-agricultural land cover types.   

As mentioned above, all of the various agricultural classes (that is, different crop types, meadows, pastures, 
permanent crops, etc.) must be also described in the calibration data set, although they may vary from one year to 
another.  Therefore, a field survey corresponding to the agricultural season of the remote sensing data set to process 
is the best way to delineate a set of training samples for each stratum, that is for instance approximately 30 samples 
per crop with an area larger than 5 pixels x 5 pixels9, to capture the signature diversity of a given crop.  Classification 
quality often improves with the quantity of samples.  If the objective is to map only the cropland in a single class 
mask, it may be sufficient to delineate all the different signatures of cropland directly on the color composites, to 
define different spectral classes, and to regroup them into a single cropland class at a later stage. In countries with 
strong agricultural seasonality, the selection of an appropriate observation period may dramatically simplify the 
sampling for agricultural lands: for example, all bare soils at a given specific period of the year could correspond 
to all annual crop types.  

It is worth noting that the comprehensive sampling of crop types often required for land cover mapping may also 
help in the production of a crop type map. In these cases, it may be more efficient to first produce an agricultural 
land mask and then classify into crop types only those pixels belonging to the agricultural land mask, rather than 
classify the entire area again.   

A major difference between a cropland mask and a crop type map is the topicality of the map.  While the cropland 
extent varies rather slowly making a given cropland mask probably relevant for several years, the crop type 
distribution may significantly change every year and is valid only for the year of observation. The same applies for 
the training data set used for calibration. 
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BOX 1. �Mali. Stratification and sampling for the Sentinel-2 for Agriculture, system 

supported by ESA. 

Covering over 447 000 km2 in Mali, the agro-ecological zoning based 

on the atlas of the Projet Inventaire des Ressources Terrestres (PIRT) 

delineates five distinct strata, including the cotton belt and the rice 

production area. For non-cropland, 12 land cover types may be 

trained separately for the five strata, yielding a total of approximately 

1 125 training samples for non-cropland (15 samples x 15 land 

cover types x 5 strata). The sample distribution within a stratum 

should cover the expected range along the land cover gradient, and 

was achieved through Google Earth interpretation of current- or 

previous-year images, plus corresponding NDVI profile wherever necessary.   

To cover crop type diversity as required for crop type mapping, each of the main crop types should be 

sampled extensively for each stratum. Indeed, the discrimination between similar crop types is expected 

to require more training data than for contrasted land cover classes. Therefore, a target of 1 800 samples, 

consisting of 30 samples x 12 crop types x 5 strata is probably a minimum. It should be noted that the 12 main 

crop types is a simplification of the 40 crop types used by Mali’s Cellule de Planification et Statistiques (CPS).    

It is worth mentioning that for their crop statistics, the 275 

CPS officers annually collect 30 000 georeferenced samples, 

corresponding to cultivated fields distributed throughout the country. 

Once quality-controlled, this information was found to be valuable as 

training data for the cropland mapping performed by the Sentinel-2 

Agriculture system. For the Southern stratum, the combination of 

non-cropland samples delineated on Google Earth and the data 

provided by the CPS allowed for mapping cropland (in white) and 

non-cropland (in black) at a 10-m resolution, using Sentinel-2 with an 

overall accuracy of 94 percent.  Such a map could definitely optimize 

the CPS’s sampling design for the future. 

Validation 
The objective of a validation data set is to provide a statistically sound estimate of the accuracy of the output map 
based on an independent reference information source. The accuracy of a map is assessed by measuring the degree 
of agreement between the output map and the validation data set.  

Several metrics of classification accuracy can be derived from the confusion matrix, which corresponds to a two-
dimensional contingency table matching the mapped and observed class for each sample.  

The training and validation data set should be completely different and spatially independent. When in situ data 
are split into two subsets, the first one used for training the algorithm, the second is often expected to assess the 
quality of the output. In fact, this should not be considered an appropriate validation exercise, as the second set 
is often spatially correlated to the training one. Such a sampling approach would assess the algorithm calibration 
performance; however, it would not assess the quality of the entire product. This would be a proper validation data 
set only if all of the samples were distributed over the entire area of interest and then randomly split into calibration 
and validation subsets.   
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The number of observation, the sampling design the response design, and the reliability of the validation data source 
define the quality of the accuracy estimate. According to sampling theory, random sampling or systematic random 
sampling are the most suitable to provide independent information and avoid spatial bias resulting from the location 
of field observations. Similarly, a sampling design based on clusters of samples aligned on a systematic grid with 
a random start guarantees the selection of a representative and spatially well-distributed data set. These rather 
theoretical sampling plans are difficult to implement on the ground in operational contexts, because of practical 
accessibility constraints and limited resources.  

A two-stage sampling strategy is often adopted to insure a large distribution of the samples and a random component 
in the sample selection. First, some Primary Sampling Units (PSUs) delineated by ancillary data (typically, 
administrative regions) are randomly selected in the different strata according to their cropland area (cropland 
area-weighted sampling probability). Then, within each PSU, the sampling could proceed as a “windshield survey”, 
identifying Elementary Sampling Units (or ESUs, having minimum dimensions of 3 pixels x 3 pixels) along the 
roads from a motorized vehicle. 

Figure 2. Sampling by windshield survey

Source: JECAM, 2014.
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In terms of response design, this approach allows a data collector to easily and rapidly capture crop diversity from 
all visible fields (set 1 in figure 4-2). The main objective of this approach is to identify long transects across the PSU 
by selecting a set of appropriate roads. However, it is recommended that this sampling strategy be complemented 
by regular additional transects (set 2) using secondary roads and tracks to reduce the spatial bias brought about by 
roadside sampling. This is crucial when the cropland or crop type distribution varies according to the distance from 
the main roads. Several transects running in various directions (for example, north-south and east-west) ensure full 
coverage of the area of interest, while secondary road sampling complements the validation set with less biased data.  

As a rule of thumb, the minimum sampling density to validate land cover maps should reach 30 samples for the 
least represented land cover class, and approximately one observation per 100–150 km2 for large areas. A higher 
sampling density would improve the quality of the accuracy estimate. As the less frequent or marginal land cover 
classes are not sufficiently represented with an overall sampling design, a specific sampling strategy is required to 
target samples for these land cover types while maintaining a random component. When up-to-date VHR imagery is 
available, a dense systematic random sampling could also allow for collecting, by visual interpretation, a sufficient 
number of samples over these less-frequent land cover types. Otherwise, a sampling on the ground that is biased 
towards these classes would be necessary. 

In some cases, existing databases may provide appropriate ground-truth for land cover map validation. For instance, 
the independent LUCAS database of the European Union (EU), designed to derive land statistics, can be used to 
perform an accuracy assessment of the land cover and cropland mapping for the corresponding year. 

The validation data are then used to assess the map accuracy defined by the agreement between the map output and 
the validation data assumed to be the truth. The most common way to derive the map accuracy is to analyse the 
confusion matrix, which is a square co-occurrence matrix compiling the number of samples matching a given land 
cover class with validation information. Diagonal values represent the agreement frequency between the validation 
data and the map output, while non-diagonal values represent the errors. 

Table 2. �Confusion matrix where nij is the number of validation samples 
corresponding to the land cover map class i and validation 
information j. 

    Validation data             

Map  Cropland  Forest  Grassland   Urban  Water  Total 

Cropland  n11  n12  n13  n14  n15  n1. 

Forest  n21  n22  n23  n24  n25  n2. 

Grassland  n31  n32  n33  n34  n35  n3. 

Urban  n41  n42  n43  n44  n45  n4. 

Water  n51  n52  n53  n54  n55  n5. 

Total  n.1  n.2  n.3  n.4  n.5   N.. 
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Among fourteen class-level and twenty map-level accuracy metrics, Liu et al. (2007) recommended user accuracy 
(UA), producer accuracy (PA) and overall accuracy (OA) as primary accuracy measures. For binary maps such as 
the cropland mask, the OA depends to a large extent on the respective proportion of both classes in the validation 
data set. In this case, the F-Score, the use of which has been recently adopted, is a more informative accuracy metric.  

The OA is computed as the ratio of the number of all correctly classified samples to the total number (N) of all 
validation samples. A standard target for the overall accuracy of a land cover map is typically 85 percent. In some 
cases, simple land cover maps that include very few classes can reach 90 percent. 

OA (%) = (100 x 𝑛𝑛"
#$% kk) / N   (equation 1) 

 

The UA for a given land cover class i is the ratio between the number of correctly classified samples as 
belonging to this class and all samples classified in this class.  

 

UAi (%) =100 x &''
&'(

   (equation 2) 

 

The PA for a given class i is the ratio between the number of correctly classified samples and all samples 
belonging to this class, according to the validation data.  

 

PAi (%) =100 x &''
&('

   (equation 3) 

 

The F-score is calculated as a combination of PA and UA for a given land cover class i:   

 

F-scorei = (2 x PAi x UAi) / (PAi + UAi)    (equation 4)  
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2.3.3 	I mage processing and map production 
The extraction of land surface information from remotely sensed data relies on a series of complex processes, 
because the radiance measured by the sensors in watt/m².str does not allow for direct inference of the land cover. 
In the past, several operational mapping systems were based on on-screen interactive visual interpretation of one 
or two images acquired at specific periods of the year, and mainly relied on expert interpretation. This approach 
has been progressively supported by image processing tools, which are either interactively run or applied once for 
all. Moving from best-image or pair-of-images selection to full-time series processing, digital processing tends to 
reduce labour-intensive data handling to focus interactive human intervention on the most critical steps.   

Any land cover map production consists of a sequence of main processing steps. For each of these steps, several 
conceptual and algorithmic choices are possible. Waldner et al. (2016) have shown that crop mask accuracy varies 
more from one agricultural region to another rather than from one state-of-the-art method to another. Clearly, certain 
methodological choices may be more appropriate than others; however, ultimately, the quality and quantity of the 
remote sensing input and of the calibration data set play an even more important role, in most cases. The key to 
success is probably the adequacy of the methodological choices adopted for a given quantity and quality of input 
Earth Observation and in situ calibration data, and with regard to the landscape characteristics to be mapped.  

As introduced in figure 1, four main steps in the land cover production chain may be clearly identified: (1) image 
segmentation; (2) feature extraction; (3) classification; and (4) postprocessing, including filtering and/or fusion. 

Image segmentation 
The land is discretized into pixels by satellite imagery, while on-screen visual interpretation delineates homogeneous 
patterns. An image raster made of pixels and a vector made of objects are the two main conceptual models designed 
to describe the spatial dimension of the world. When the spatial resolution is close or larger than the size of the land 
cover elements to be mapped, land cover information is generally extracted at the pixel level and the segmentation 
step is not necessary. For VHR or high-spatial-resolution imagery providing pixels much smaller than the land 
cover elements, the vector model is usually preferred and the image should be segmented into objects by means of 
image segmentation algorithms. 

Image segmentation groups adjacent pixels into spatially continuous objects according to their spectral characteristics 
and their spatial context, aiming to capture meaningful spatially discrete land objects. The object-based approach is 
well adapted to image texture extraction, has intrinsic contextual information avoiding a salt-and-pepper effect in 
the classification output, and supports multiscale interpretation thanks to hierarchical or multilevel segmentation 
(Radoux and Defourny, 2008). On the other hand, this step is also an additional source of error compared to the 
pixel-based approach. As explained above, it is mostly recommended to proceed with object-based classification 
when the pixel size is much smaller than the landscape elements. Typically, metric and decametric images are often 
segmented into objects, while hectometric-resolution images are not. In exceptional cases, pixel- and object-based 
production chains have been designed; consider the interactive production of the GlobeLand30 land cover map 
(Jun Chen et al. 2015). 

Image segmentation can be performed on the basis of two distinct approaches: the gradient-based methods, which 
rely on a local detection of edges (such as watershed delineation from the intensity gradient), and the region-growing 
methods, which identify spatial clusters of coherent pixels. One of the most popular region-growing algorithms in 
remote sensing consists in grouping objects together as long as the normalized variance of the pixel values within 
the merged object remains below a given threshold (Baatz and Schäape, 2000). In addition to spectral homogeneity, 
the merging of objects can also be constrained by the object shape, to improve the matching with spatial land 
cover objects. This algorithm has been implemented in the commercial software eCognition, while the watershed 
delineation and mean-shift algorithms are implemented in the open source ORFEO toolbox (https://www.orfeo-
toolbox.org/) and available in the open-source Quantum GIS (QGIS) through the SEXTANTE plugin. 
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Feature extraction 
The feature extraction step consists in computing, from the remote sensing images or time series, the most 
discriminant variables to be used as input for the classification algorithm. These features may be of various natures: 
(1) spectral, as the multispectral reflectance or the derived indices, such as the NDVI or any other vegetation, 
chlorophyll or soil index; (2) temporal, as the minimum, maximum or amplitude of a variable over a given time 
period; (3) textural, as the local contrast, entropy or any other variable derived from the co-occurrence matrix; and 
(4) a spatial or contextual variable that is particularly suited to the object-based approach. 

Currently, three main strategies may be observed in the field of land cover mapping. First, classical strategies rely 
mainly on spectral features and, possibly, some simple temporal features based on NDVI time series, considering 
that these are the sources of all other features in any case. In light of increasingly powerful computing performances 
and the dissemination of machine-learning algorithms, many remote sensing specialists now consider that “more 
is better” (in terms of features) and rely on classification algorithms to select the most discriminant ones. Third, 
knowledge-based strategies aim to integrate external expert knowledge by designing ad hoc features according to 
the classification target and by retaining only those features deemed meaningful according to experts’ rationale 
(Lambert et al., 2016).  

Classification 
The classification step consists in one or many numerical processes to finally allocate every pixel or object to one 
of the classes of the land cover typology. The vast diversity of classification algorithms can be split into two main 
types: the supervised type, which uses a training data set to calibrate the algorithm a priori; and the unsupervised 
type, which produces clusters of pixels to be labelled a posteriori as land cover class in light of in situ or ancillary 
information. More recently, forerunning steps of supervised classification are very useful and consist in automatic 
cleaning of in situ training data sets or active learning to build a more efficient training data set, by iteratively 
improving the performance of the classifier model.  

The set of methods used to classify images in land cover classes is constantly expanding and is summarized in table 
3 in terms of strengths and disadvantages. A review of these methods was recently completed by Davidson (2016) 
and is included below. 
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Table 3. �Strengths and weaknesses of algorithms used for large-area 
classification of satellite image data (based on Gómez et al., 2016).

Algorithm  Strengths/characteristics  Weaknesses 

Maximum Likelihood 
(Parametric) 

•	 Simple application 
•	 Easy to understand and interpret 
•	 Predicts class membership probability 

•	 Parametric 
•	 Assumes normal distribution of data 
•	 Large training sample necessary 

Artificial Neural 
Networks 
(Non-parametric) 

•	 Manages large feature space well
•	 Indicates strength of class membership 
•	 Generally high classification accuracy 
•	 Resistant to training data deficiencies – 

requires less training data than Decision 
Trees (DTs) 

•	 Needs parameters for network design 
•	 Tends to overfit data 
•	 Black box (rules are unknown) 
•	 Computationally intense 
•	 Slow training 

Support Vector Machines 
(Non-parametric) 

•	 Manages large feature space well
•	 Insensitive to Hughes effect 
•	 Works well with small training data set 
•	 Does not overfit 

•	 Needs parameters: regularization and 
kernel 

•	 Poor performance with small feature 
space 

•	 Computationally intense 
•	 Designed as binary, although variations 

exist 

Decision Trees 
(Non-parametric) 

•	 No need for any kind of parameter 
•	 Easy to apply and interpret 
•	 Handles missing data 
•	 Handles data of different types (e.g. 

continuous, categorical) and scales 
•	 Handles non-linear relationships 
•	 Insensitive to noise 

•	 Sensitive to noise 
•	 Tends to overfit 
•	 Does not perform as well as others in 

large feature spaces 
•	 Large training sample required 

Random Forests 
(Non-parametric) 

•	 Capacity to determine variable importance 
•	 Robust to data reduction 
•	 Does not overfit 
•	 Produces unbiased accuracy estimate 
•	 Higher accuracy than DTs 

•	 Decision rules unknown (black box) 
•	 Computationally intense 
•	 Requires input parameters (#trees and 

#variables per node) 

Classification based on Maximum Likelihood 
Until recently, the Maximum Likelihood (ML) classification method was the most widely used method for the 
supervised classification of remote sensor data (Lu and Weng, 2007; Bhatta, 2008; Kumar et al., 2016). The ML 
decision rule is based on probability. In this approach, training data are used to describe target classes statistically 
by their multivariate probability density functions. Each density function represents the probability that the 
spectral pattern of a class falls within a given region in multidimensional spectral space. The spectral signature of 
each pixel is then assigned to the class of which it has the highest likelihood of being a member (Jensen, 1986).  

While the primary advantage of the ML approach is the full control that an analyst has over the land cover 
classes to be used in the final classification, its application is limited by its reliance on the Gaussian distribution 
of input data, an assumption that is often violated when using multitemporal data of many spectral features and 
multimodal distributions (Gislason et al., 2006; Glanz et al., 2014). In addition, classification through ML uses 
the same set of features for all classes and requires a large number of computations to completely classify image 
data. This is particularly true when a large number of features are used as input to the classification process, or 
where a large number of spectral classes must be differentiated. In such cases, the implementation of the ML 
classifier can be significantly slower than other supervised classification techniques. The various limitations 
associated with ML classification translate into the active development of novel classification algorithms for 
the field of remote sensing. Of these new methods, artificial neural networks (ANNs: Rumelhart et al., 1986; 
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Rigol-Sanchez et al., 2003), support vector machines (SVMs, Abedi et al., 2013; Al-Anazi and Gates, 2010; 
Cortes and Vapnik, 1995; Ghimire et al., 2012; Zuo and Carranza, 2011), Decision Trees (DTs) (Breiman, 1984) 
and ensembles of classification trees such as Random Forest (RF, Breiman, 2001; Vincenzi et al., 2011; Waske 
and Braun, 2009; Ghimire et al., 2012; Rodriguez-Galiano and Chica-Olmo, 2012) have shown great promise.  

Artificial Neural Networks 
The use of ANNs for remote sensing classification is motivated by the realization that the human brain is efficient 
at processing vast quantities of data from a variety of different sources, and that mathematical renderings of this 
approach may be useful for processing and interpreting image data. When applied to image classification, an 
ANN is a massively parallel distributed processor made up of simple processing units that acquires knowledge 
from its environment through a self-learning process, to adaptively construct linkages between the input data, 
such as satellite imagery features, and the output data, such as target cover classes (Rumelhart et al., 1986; Rigol-
Sanchez et al., 2003). Notable ANNs are the Back-Propagating Multi-Layer Perceptron (MLP) (Wilkinson, 
1997), Kohonen’s Self-Organizing Feature Map (KSOFM) (Ji, 2000; Pal et al., 2005) and Fuzzy ARTMAP 
(Carpenter et al., 1992; Mannan et al., 1998). While these approaches vary in terms of their exact implementation, 
they all require training and classification to extract useful information from remotely sensed image data (Jensen, 
2016). In the training stage, image data from locations whose attributes (classes) are known are passed as input 
to the network. The network uses this information in an iterative procedure that defines the rules that produce 
the best classification results. These rules are then used in the classification stage to assign features data to the 
training class of which it has the highest probability (fuzzy membership grade) of being a member.  

The advantages to ANNs include their ability to: (1) perform more accurately when input data comprise many 
large data sets that are measured at different scales and the frequency distributions of which are non-normal; 
(2) learn and continuously update complex patterns, such as non-linear relationships between input data and 
output classes, as more data are provided in a changing environment; (3) provide, through generalization, robust 
solutions in the presence of incomplete or imprecise data; and (4) incorporate a priori knowledge and realistic 
physical constraints into the analysis (Atkinson and Tatnall, 1997; Pal and Mather, 2003; Rogan et al., 2008; 
Hansen, 2012; Jensen, 2016). However, the disadvantages to ANNs have limited their adoption to critical real 
world applications (Pal and Mather, 2003; Qiu and Jensen, 2004; Jensen, 2016). Arguably, the biggest drawback 
of ANNs is that they are a “black box” for interpretation (Rodriguez-Galiano et al., 2012; Gómez et al., 2016). 
Indeed, it has traditionally been difficult to explain in a meaningful way the process through which the output 
has been obtained, because the rules for image classification and interpretation learned by the network are not 
easily accessible or describable (Qiu and Jensen, 2004; Jensen, 2016). As a result, other classification methods 
with more readily understandable explanation capabilities tend to be used instead.  

Support Vector Machines 
Support Vector Machines (SVMs), a supervised non-parametric statistical learning technique for solving 
classification problems (Smola and Schoelkopf, 1998; Vapnik, 2000), show great potential for the classification 
of remotely sensed image data (Melgani and Bruzzone, 2004; Pal and Mather, 2005). SVMs solve a quadratic 
optimization problem to determine the optimal separating boundaries (hyperplanes) between two classes in 
multidimensional feature space (Foody and Mathur, 2004). SVMs do this by focusing only on the training data 
that lie at the edge of the class distributions (that is, the support vectors). When classes cannot be separated, 
the training data are projected into a higher-dimensional space using kernel techniques, where the new data 
distribution enables the better fitting of a linear hyperplane (Van der Linden et al., 2009). This procedure is 
repeated for each pair of classes to divide the data into the predefined number of classes. The rules for optimal 
class separation are then used to assign all image data into the predefined target classes. The basis of the SVM 
approach to classification is, therefore, the notion that only the training samples that lie on the class boundaries 
are necessary for discrimination (Foody and Mathur, 2004). 
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The advantage to using SVMs is their ability to outperform traditional classification methods when only small 
training data sets are available (Foody and Mathur, 2004; Waske and Benediktsson, 2007). The underlying 
principle that benefits SVMs is that the learning process is based on structural risk minimization (Van der Linden 
et al., 2009). Under this scheme, SVMs minimize classification error on unseen data without making any a 
priori assumptions on the statistical distribution of the data (Mountrakis et al., 2011). The major disadvantage to 
using SVMs concerns the selection of the most appropriate kernel function type and its associated parameters. 
Although many options exist, some kernel functions are unable to provide optimal SVM configuration for 
remote sensing applications (Mountrakis et al., 2011). This is important because inappropriate choices may 
lead to overfitting or oversmoothing, which may bear a significant negative influence on SVM performance 
and classification accuracy (Ustuner, 2015; Martins et al., 2016). In addition, SVMs are not optimized to deal 
with noisy data, such as the outlier effects frequently encountered in remote sensing data, the inclusion of which 
can dramatically reduce classifier performance (Mountrakis et al., 2011). Despite these issues, SVMs remain a 
popular option for land cover classification.  

Classification based on Decision Trees  
Decision Trees (DTs), supervised classification methods based on recursive binary partitions complying with a 
set of optimized rules, have become an attractive option for extracting discrete class information for land cover 
classification (Huang and Jensen, 1997 Friedl et al., 2002). A DT takes a set of features as input, and returns 
an output (that is, a decision) through a sequence of tests. Trees build the rule by recursive binary partitioning 
regions (nodes) that are increasingly homogeneous with respect to their class variable (Breiman, 1984). DT 
classifiers create multivariate models based on a set of decision rules defined by combinations of features and a 
set of linear discriminant functions that are applied at each test node (Champagne et al., 2014). Typically, after a 
sufficient number of training samples have been collected (Lu and Weng, 2007), a DT learning algorithm uses the 
training data to generate DTs that are then transformed into another representation of knowledge representation, 
called production rules. Because production rules are easy to understand, they can be examined by human experts 
and, with caution, can be edited directly (Jensen, 1986).  

The use of DTs for image classification has various advantages, such as the ability to handle data at different 
measurement scales (Brown de Colstoun et al., 2003), non-normal (non-parametric) input data frequency 
distributions (Friedl and Brodley, 1997; Hansen et al., 1996), and non-linear relationships between input data 
and classes (Friedl et al., 2002).  These are similar to those described for ANNs. However, in addition, DTs 
are easy to apply because fewer numbers of parameters need to be estimated (Friedl et al., 2010; Gómez et 
al., 2016); they provide a hierarchical structure that is transparent and easy to interpret (Hansen et al., 1996; 
Rodriguez-Galiano and Chica-Olmo, 2012); and they can be trained by creating rules and conditions directly 
from training data with little human interaction (Huang and Jensen, 1997). One of the most important features of 
DTs is that they can adapt when new learning data are provided and, because the output of the system itself, can 
be evaluated to examine how a conclusion was reached (Jensen, 2016). The disadvantage to using DTs include 
the sensitivity of DTs to feature spaces with high dimensionality (Pal and Mather, 2003), noisy data (Ghimire 
et al., 2012) and overfitting (Breiman, 1984). A better understanding of the influences on DT classification 
performance is an area of remote sensing that is currently undergoing further research (Hansen, 2012), and has 
led to the development of ensemble DT-based methods – such as the Random Forest (RF) method – that improve 
classification performance through the combination of many individual DTs.  

Classification based on Random Forests 
Random Forest (RF), an improved implementation of DT, is an ensemble-learning algorithm that combines 
multiple classifications of the same data to produce higher classification accuracies than other forms of DT 
(Cutler et al., 2007; Ghimire et al., 2012). RF works by fitting many DT-based classifications to a data set, and 
then uses a rule-based approach to combine the predictions from all the trees. During this process, individual 
trees are grown from differing subsets of training data using a process called “bagging”. Bagging involves the 
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random subsampling (with replacement) of the original data for growing each tree. Generally, for each tree 
grown, two thirds of the training data are used to grow the tree, while the remaining one third are left unused 
(out-of-bag, or OOB) for later error assessment (Breiman, 2001). A classification is then fit to each bootstrap 
sample; however, at each node (split), only a small number of randomly selected predictor variables are used in 
the binary partitioning (Rodriguez-Galiano and Chica-Olmo, 2012). The splitting process continues until further 
subdivision no longer reduces the Gini index (Cutler et al., 2007). Each tree contributes to the assignment of the 
most frequent class to the input data with a single vote (Breiman, 1984; Rodriguez-Galiano and Chica-Olmo, 
2012). The predicted class of an observation is calculated by the majority vote for that observation, with ties 
split randomly (Cutler et al., 2007).  

The biggest advantage of RF is that it is potentially more accurate and robust than conventional parametric 
or DT machine-learning methods (Rodriguez-Galiano and Chica-Olmo, 2012). This is because the group of 
classifiers performs more accurately than any individual classifier, while circumventing classifier weaknesses 
(Breiman, 1984; Ghimire et al., 2010; Kotsiantis and Pintelas, 2004). In addition, RF requires the definition 
of only two parameters to generate the prediction model (that is, the number of classification trees desired 
and the number of prediction variables used in each node to grow the tree), and is therefore considered fairly 
straightforward to parameterize (Rodriguez-Galiano and Chica-Olmo, 2012). Further advantages result from 
the RF’s use of bagging to make individual trees grow from training data subsets. Fully grown trees are used to 
compute accuracies and error rates for each observation using the OOB predictions, which are then averaged over 
all observations. Because the OOB observations are not used to fit the trees, the OOB estimates are essentially 
cross-validated accuracy estimates (Rodriguez-Galiano and Chica-Olmo, 2012). RF is also able to assess the 
importance of a single variable. For this purpose, RF switches one of the input variables, maintaining the rest 
constant, and measures the decrease in accuracy that has taken place by means of the OOB error (Breiman, 1984; 
Rodriguez-Galiano and Chica-Olmo, 2012). This is useful when it is important to know how each predictive 
variable influences the classification model (Ghimire et al., 2010; Gislason et al., 2006; Pal and Mather, 2005). 
The disadvantage to using RF is that with a large number of trees, it becomes less feasible to examine individual 
trees and understand their structure (Deschamps et al., 2012), thus leading to a black box nature that obfuscates 
decision rules (Gómez et al., 2016) 

To conclude, a comprehensive synthesis of this body of work was recently completed by Khatami et al. (2016) 
thanks to a statistical meta-analysis of research on supervised pixel-based land cover image classification. 
Based on research published from 1998 to 2012 in five high-impact remote sensing journals, this study aimed 
to provide coherent guidance on the relative performances of different classification processes for generating 
land cover products. Unfortunately, it is not possible to identify a single best solution for all possible situations; 
however, various versions of RF or SVM tend to be preferred as single classifier, because of the maturity of these 
machine-learning classifiers and their suitability to handle very large features dimensions. Alternatively, more 
sophisticated processing strategies may also be designed on an ad hoc basis to combine different classifiers for 
different classification outputs, for instance, to proceed in a hierarchical way (in other words, operating a first 
discrimination between water, bare soil, urban, forest, cropland and others, and then a second classification to 
separate the various agricultural classes). 

Postprocessing 
Postprocessing operations can improve the classification output thanks to the possibility to apply various filtering 
techniques or to fuse various classification outputs. First, macroscopic errors can be corrected interactively, 
as they are clearly identified by systematic visual inspection. Basic filtering operators over sliding window of 
3 pixels x 3 pixels or 5 pixels x 5 pixels, such as a majority filter removes the salt-and-pepper effect induced 
by pixel-based classification. More interestingly, such a majority filter could also be applied to pixel-based 
classification output using objects obtained by multispectral reflectance image segmentation, thus providing a 
much smoother land cover map.   
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Fusion techniques are required to merge outputs from the ensemble classifier. A single output map can be obtained 
by majority voting either where the ensemble chooses the class on which all classifiers agree (unanimous voting); 
at least one more than half of the classifiers agree (simple majority); or several classifiers agree (plurality voting). 
Weighted majority voting can be used when some classifiers are expected to perform better than others, or are 
weighted by the associated probability or membership of the classification output.  

It is important to note that the various steps described above are largely interrelated, and each decision must 
consider the entire land cover mapping production chain to ensure that an appropriate solution is achieved.   

2.4. Current practices and existing land cover data sets 

As an alternative to producing a new land cover map, the fusion of several existing land cover products may 
sometimes yield a better map – with reduced uncertainties and the desired classification legend – for specific 
applications (Jung et al., 2006). Compiling all available information on a single land cover or land use class from 
multiple sources, a global cropland map was derived (Thenkabail et al., 2009). Two other global maps were similarly 
derived to map cropland with an emphasis on water management:  the Global Map of Rain-fed Cropland Areas 
(GMRCA) and the Global Irrigated Area Map (GIAM). However, the coarse spatial resolution (10 km) of these 
products does not meet the needs of operational applications and entail large uncertainties, especially with regard 
to complex farming systems such as those prevailing in Africa. 

For their land cover information, national or regional programs often use imagery at resolutions ranging from 5 m 
to 30 m, or rely upon the integration of multisensor images. Most of these national land use land cover programs 
are listed in the appendix to this chapter, in particular when the output map was available. Some countries have 
established dedicated annual national crop type mapping based on satellite remote sensing, such as the 30-m 
Cropland Data Layer (CDL) of the United States of America, or Canada’s 30-m Annual Crop Inventory. On the 
other hand, to manage the distribution of subsidies from the EU Common Agricultural Policy, most EU countries 
maintain a Land Parcel Identification System (LPIS) for farmer’s declarations. Such annual information over most 
of the agriculture area proved highly efficient in supporting national land cover and cropland mapping, for example 
using the Sentinel-2 Agriculture system (see section 2.4.2 below). 

Other efforts, such as Africover and the Global Land Cover Network (GLCN) program, have completed detailed 
land cover maps at the country level on the basis of visual interpretation of 30-m spatial resolution images rather 
than automatic classification. Therefore, they are updated less frequently. In addition, various global land mapping 
initiatives have recently delivered global land cover products, such as the GlobeLand3012, the Globcover 2005 & 
200913, the MODIS land cover14 and, most recently, the ESA CCI Land Cover database15.  

Despite the availability of multiple land cover maps for a given country, it is not readily apparent which of these is 
the most useful for specific applications, nor how to combine them to provide an improved data set. The standards 
in terms of land cover map documentation, and then a systematic review of all currently available data sets, are 
given below. 

12    http://glc30.tianditu.com/.
13    http://due.esrin.esa.int/page_globcover.php.
14    http://modis-land.gsfc.nasa.gov/landcover.html.
15    http://maps.elie.ucl.ac.be/CCI/viewer/.
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2.4.1 Metadata, data policy and crowdsourcing 
Metadata are data that provide information on other data. In the geospatial domain, these metadata are essential 
to make appropriate use of any raster or vector layer. ISO standard 19115-1:2014 defines the schema required for 
describing geographic information and services by means of metadata. Metadata should provide information on 
the identification, extent, quality, spatial and temporal aspects, content, spatial cartographic reference, portrayal, 
availability and distribution policy, as well as other properties of digital geographic data and services. When metadata 
records are formatted to a common standard, it facilitates the location and readability of the metadata by both humans 
and machines, enabling it to be automatically used for software data catalogues. More specifically for purposes of 
land cover information, ISO standard 19144-2:2012 introduced in section 2.1.1 above defines the LCML framework 
to fully document the land cover typology. 

Open-source data policies are increasingly frequently applied to government data, thus allowing wider use of the 
available information and possibly collaborative efforts to keep them updated. While the open policies adopted 
in the United States of America with regard to GIS and EO paved the way, the EU INSPIRE Directive16 now 
recommends that all EU Member States document, with precise metadata, all of the geospatial information produced 
by administration and governmental agencies and to make these data publicly available. Furthermore, creative 
commons licenses17 are a very good solution for sharing geospatial data while assuring that the credit remains with 
the authors and, possibly, setting restrictions on the commercial use of the data in question.   

More recently, collaborative initiatives for land cover data collection have also been rapidly developing. The Geo-
Wiki platform18 has proposed various crowdsourcing applications to compare global land cover maps or to collect 
reference data.  An impressive amount of in situ data or photointerpreted samples can be quickly collected when 
such a platform is well designed and promoted. However, the scientific exploitation of crowdsourcing data still 
requires methodological development. A good example of open-source geospatial collaborative data collection is 
the Open Street Map initiative19, which provides an open global baseline map that can inspire advanced land cover 
mapping initiatives, for example for designing in situ data collection. 

2.4.2 	 Comprehensive review of existing land cover and cropland data sets 
To assess the fitness of existing land cover maps to cropland mapping, Waldner et al. (2015) propose an analytical 
framework to assess the effectively available land cover data set for each country. This framework uses four criteria 
to quantitatively evaluate land cover maps with regard to cropland information: (1) thematic information relevant 
to cropland definition; (2) timeliness; (3) spatial resolution; and (4) confidence level. Based on this initial analysis, 
it has been possible to identify the priority areas for cropland mapping efforts at the global scale. 

The identification and collection of national, regional and global land cover maps is a long-term enterprise, because 
of the variety of sources and producers involved and the many different data distribution policies. The elaboration of 
an exhaustive inventory and spatial database is a continuous effort, in light of the constant product releases, updates 
and changes made to policies on data access. Global, regional and national data sets were identified by means of 
systematic review during working sessions with key individual experts, literature reviews and web-based searches. 
While collecting these data sets, it was necessary to distinguish existing data sets from free-of-charge, publicly 
available data (see appendix); with regard to the former, a distribution policy is generally in place that prevents 

16   � Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Infor-
mation in the European Community (INSPIRE), available at http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32007L0002 
(last accessed 10 June 2017).

17    https://creativecommons.org/share-your-work/.
18    http://www.geo-wiki.org/.
19    https://www.openstreetmap.org/#map=5/51.500/-0.100.
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their use, or it may be difficult to access the actual georeferenced data set (and not merely an image of the maps 
embedded in a website). Therefore, the general rule is that a data set that is not available is considered non-existent 
and is not considered in the review. 

Global land cover products such as GLC2000, GlobCover 2005/2009, MODIS Land Cover, GlobeLand30, and 
ESA Climate Change Initiative (CCI) Land Cover products do not specifically target the agriculture component of 
the landscape. Poor semantic definition of the classes may prevent their use for agricultural applications; however, 
several other reasons exist to explain the poor accuracy of the cropland class in most of these products: (1) the 
heterogeneous and dynamic intrinsic nature of the world’s agrosystems; (2) the spatial structure of the landscape 
(parcel size) and its crop diversity; (3) differences in crop cycles; (4) differences in cropping practices and calendars 
within the same class; (5) spectral similarity with other land cover classes; and (6) for optical-derived maps, 
persistent cloud coverage. 

After the land cover maps have been comprehensively identified and collected, each criterion was quantified for 
each map and the multicriteria analysis was applied at the country level to identify the priority areas for cropland 
mapping. Three critical priority areas were identified: African countries (mainly in West Africa), Southeast Asia 
(especially Indonesia) and South America (Brazil). Other countries, such as Ethiopia, Madagascar, Mozambique 
and Pakistan, should also be strongly considered.  

Figure 3. (a) Priority indicator map and (b) its update typology.

Areas with a high priority index (reddish shades) characterize priority areas for cropland mapping, whereas areas with low scores 
correspond to accurate and precise current maps (greenish shades). West Africa, Ethiopia and Southeast Asia (Indonesia) clearly appear 
as priority areas for cropland mapping (Waldner et al., 2015).
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Realizing the richness and the range of the quality of existing land cover maps, the study capitalized on previous 
works to harmonize them. Building on the priority analysis, a Unified Cropland Layer20 is created by combining the 
fittest products. The Layer was assessed against available global validation data sets and yields an overall accuracy 
ranging from 84 to 95 percent, thus outperforming most global land cover maps. 

2.4.3 	L and cover change detection  
In the literature (see for example Jung et al., 2006; McCallum et al., 2006), the discrepancy between several and/
or successive land cover products is often explained by the incompatibility between land cover typologies and by 
current map accuracies, which are ranging from 70 percent to 85 percent for global land cover products. These 
overall accuracies make it impossible to derive any land cover change information from direct comparison of such 
products as the annual land cover change rate is significantly lower than the error rate in the land cover maps. 

At coarse resolutions, significant year-to-year variations in land cover labels that are not associated with land cover 
change may be observed. This problem appears to be partly explained by the fact that several landscapes include 
mixtures of classes at a spatial resolution between 300 m and 500 m. Furthermore, year-to-year variability in 
vegetation phenology, and disturbances such as fire, drought, and insect infestation, make it rather difficult to attain 
a consistent annual characterization.   

For these reasons, the Land Cover component of the ESA Climate Change Initiative has developed a strategy to 
decouple land cover mapping from land cover change detection. This allows delivering a unique and consistent time 
series of 24 annual global land cover maps from 1992 to 2015 at a resolution of 300 m, highlighting the changes 
occurring from one year to another and from one land cover to another (figure 3). This long set of maps was only 
possible with 1-km² observation from AVHRR, SPOT-Vegetation, and PROBA-V. At such a resolution, only major 
land cover changes are expected to be detected at an annual interval; however, the daily observation capabilities of 
these instruments allow for dealing with the interannual variability of the seasonality observed in different biomes.  
Once the land cover change is detected, imagery at a resolution of 300 m is used to delineate the change precisely.

20    http://maps.elie.ucl.ac.be/geoportail/.
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Figure 4.

Land cover changes occurring from 1992 to 2015 in Cambodia as detected at 1 km and mapped at a resolution of 300 m, showing, among 
other phenomena, urban expansion (red) and large cropland (yellow) encroachments into the different forest types (shades of green). 
These maps, drawn from the CCI Land Cover project, and their full legends, are available at http://maps.elie.ucl.ac.be/CCI/viewer/.

Even using high-resolution land cover mapping outputs such as the CORINE Land Cover program, it is challenging 
to attain the expected product stability over time, and a specific procedure for change detection is required. Such 
instability across products clearly calls for the adoption of alternative approaches or alternative concepts. 

Two main challenges must be addressed if land cover change detection is to be reliable. First, specific change 
detection methods must be developed and extensively tested to capture the very low percentage of annual land 
cover change (the fastest cropland extension ever observed in Brazil and Argentina was below 4 percent per year 
and in Africa, it remains mostly below 1 percent). To date, a method validated for various agro-ecosystems is not 
currently available for annual cropland change detection. However, several change detection methods – either 
object-based (for instance, Desclée et al., 2006; Ernst et al., 2013) or pixel-based (for instance, Hansen et al., 2013) 
– have reached a good stage of maturity and are able to deliver accurate information on forest change, mainly but 
not exclusively relating to agricultural clearings. Most of these methods directly compare reflectance values or sets 
of vegetation index values to identify the land surface change, rather than classifying the land cover. In addition, 
precise change detection for agricultural lands was hampered by the lack of dense time series of high-resolution 
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data. The recent availability of Sentinel-1, Sentinel-2 and Landsat-8 time series and their long-term continuity call 
for new developments of annual cropland change detection methods.  

2.5. �Ongoing mapping initiatives at multinational or global 
scale 

Several international initiatives are currently seeking to attain breakthroughs in the field of land cover mapping. 
This section introduces three of these initiatives, focusing specifically on agricultural lands. 

2.5.1. 	Global Cropland  
The possibility provided by Google Engine to access high-power computing facilities and the entire Landsat archive 
online paves the way for major initiatives to be launched, such as the Global Food Security Analysis-Support Data 
at 30 meters (GFSAD30) project, led by USGS (Thenkabail et al., 2012). From Landsat and MODIS archives, 
classification methods based on temporal analysis of the signal   aim to complete a 30-m global cropland map from 
a multi-source data set (figure 4). A mobile application and access to their ready-to-use data set opens the way to 
collaborative efforts. 

Figure 5. �

Current (March 2017) achievement of the USGS GFSAD30 project to deliver croplands at a resolution of 30 m (https://croplands.org/).
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2.5.2 	 The Sentinel-2 for Agriculture system  
Driven by the information needs defined by major international stakeholders and supported by ESA, the ESA 
Sentinel-2 for Agriculture (Sen2-Agri) project, led by the Université catholique de Louvain (Bontemps et al., 
2016) has developed and released an open-source processing system to automatically download all Sentinel-2 and 
Landsat-8 images captured during the growing season to deliver in near real-time a suite of four different nationwide 
products at a resolution of 10 m: (i) monthly cloud-free temporal syntheses of surface reflectance values in the 
ten Sentinel-2 bands, at resolutions of either 10 or 20 m according to the band; (ii) monthly cropland masks at a 
resolution of 10 m delivered during the agricultural season(s) to map the annual cropland; (iii) crop type maps and 
early area indicators for five main crop types, delivered at mid- and end-season; (iv) vegetation status describing 
crop development on a seven-day basis whenever cloud-free observation is available –. The latter consists of a 
set of maps of indicators including the NDVI, the Leaf Area Index (LAI) and phenology metrics derived from the 
NDVI time profiles.  

This Sen2-Agri system has been successfully demonstrated at national scale in Ukraine, Mali (see text box above) 
and South Africa, and over nine additional sites around the world. Its nominal operation requires both Sentinel-2 
A and B satellites in orbit in addition to the Landsat-8, to enhance the observation frequency. While the cropland 
mask can be produced without in situ data, the capacity to collect quality-controlled in situ data in a timely manner 
was found to be critical to the production of crop-type maps in the course of the growing season. Released in June 
2017 to the public as an operational production system, the Sen2-Agri system is expected to serve as a key source of 
remote sensing products for various applications in agriculture monitoring, for precise stratification of the sampling 
design and the compilation of early crop statistics (Defourny et al., 2016). The specificity of this production system 
lies in its near real-time and automated capabilities for the scalable processing of image time series that are remotely 
sensed throughout the season at a resolution of 10 m for entire national territories. 
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Figure 6.

Sen2Agri 10-m natural colour composites (left) and corresponding cropland maps (right) for the 2016 growing season in Mali, as 
automatically derived in September from Sentinel-2A time series: upper zoom in the region of Kita, and lower zoom in the rice 
production area of the Office du Niger.

2.5.3 	I rrigated rice mapping  
The mapping of irrigated rice systems has been an active research field, in particular using Synthetic Aperture 
Radar (SAR) observations. Rice has a highly specific spectrotemporal signature, such that it is usually not 
addressed in a land cover mapping perspective but rather in a context of rice monitoring. With the advent of several 
operational SAR systems in orbit that are capable of providing dense and consistent time series, such as those from 
PALSAR, Radarsat-2 or Sentinel-1a and Sentinel-1b, the mapping of irrigated land is now mature. For example, 
the International Rice Research Institute (IRRI) has been working very actively to detect the planting dates and 
the planted area for the entire Philippines (PRISM project), while Asia-Rice, supported by JAXA, and GEO-Rice, 
supported by ESA, are other two ambitious activities currently taking place in the context of the GEOGLAM. 
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Perspectives  

With the advent of the fleet of Sentinel satellites (Sentinel-1a and Sentinel-1b, Sentinel-2a and Sentinel-2b) providing 
(often) free global-level Earth Observation at resolutions ranging from 10 to 20 m for the entire world on a regular 
basis (five days revisit time for Sentinel-2 and 12 days for Sentinel-1), EO is entering a new era of fully operational 
applications that are also sustainable in the long term. This is particularly useful for regular nationwide land cover 
mapping initiatives for the purposes of agricultural landscape stratification. It can be predicted that other disciplines, 
such as statistics and agro-economics, will soon clearly identify the benefits of this evolution and make appropriate 
adjustments in terms of information flows. 

This seamless revolution concerns not only the availability of space technology and related data policies, but also the 
cloud computing infrastructure and the methodological progress linked to machine learning and artificial intelligence 
algorithms. Even field data collection strategies take advantage of IT evolutions such as crowdsourcing initiatives, 
mobile applications and the growth in the use of UAVs. 

Moving away from the static perspective of a map, time series of annual maps allow for the yearly consolidation 
of their quality and enhancement of their capacity for change detection. The map will increasingly become a 
georeferenced land cover land use database, continuously updated with the flow of incoming satellite observation. 
In the context of agricultural statistics, both the increasing computing capacities and the enhanced data flows directly 
from the field make a strong contribution to the timeliness and cost-effectiveness of land cover and cropland map 
production. 

This evolution is also considered in the context of policy-making. Land cover is deemed a key source of information, 
to be used by countries for reporting on the Sustainable Development Goal (SDG) indicators. Similarly, it is 
worth mentioning that land cover and land use classifications are crucial components of the international Central 
Framework of System of Environmental and Economic Accounting (SEEA) standard, and even more so of its 
satellite accounting system for Agriculture, Forestry and Fisheries (SEEA AFF), jointly developed by FAO and the 
UN Statistics Division (UNSD). SEEA AFF provides a statistical framework to report on agricultural statistics and 
develop related agri-environmental indicators, and the SEEA land cover classification itself is based on the Land 
Cover Meta Language (LCML) classifiers.  

Beyond the land cover use for sampling stratification, the development of SEEA-compliant land cover products at a 
national scale should ensure a reporting of agri-environmental statistics that is inherently coherent with the System 
of National Accounting, and the development of agricultural policies that better capture the environmental aspects of 
agricultural activities. The necessary close links between policy-making processes, agricultural statistics, indicators 
and land cover information are key arguments in enhancing the national capacity for operational and efficient land 
mapping on the basis of remote sensing data. 



Handbook on remote sensing for agricultural statistics50

2.6. References 

Abdulaziz, A.M., Hurtado, J.M. & Al- Douri, R. 2009. Application of Multitemporal Landsat Data to Monitor 
Land Cover Changes in the Eastern Nile Delta Region, Egypt. International Journal of Remote Sensing, 30(11): 
2977–96. 

Abedi, M., Gholam-Hossain, N. & Fathianpour, N. 2013. Fuzzy Outranking Approach: A Knowledge-
Driven Method for Mineral Prospectivity Mapping. International Journal of Applied Earth Observation and 
Geoinformation, 21: 556–67. 

Al-Anazi, A.F. & Gates, I.D. 2010. Support Vector Regression for Porosity Prediction in a Heterogeneous 
Reservoir: A Comparative Study. Computers & Geosciences, 36(12): 1494–1503. 

Atkinson, P.M. & Tatnall, A.R.L. 1997. Introduction Neural Networks in Remote Sensing. International 
Journal of Remote Sensing, 18(4): 699–709. 

Baatz, M. & Schäpe, A. 2000. Multiresolution segmentation - an optimization approach for high quality multi-
scale image segmentation. In: Strobl, J., Blaschke, T. and Griesebner, G. (eds), Angewandte Geographische 
Informationsverarbeitung XII (pp. 12–23), Wichmann-Verlag: Heidelberg. 

Bagan, H., Kinoshita, T. & Yamagata, Y. 2012. Combination of AVNIR-2, PALSAR, and Polarimetric Parameters 
for Land Cover Classification. IEEE Transactions on Geoscience and Remote Sensing, 50(4): 1318–28. 

Bagan, H. & Yamagata, Y. 2010. Improved Subspace Classification Method for Multispectral Remote Sensing 
Image Classification. Photogrammetric Engineering and Remote Sensing, 76(11): 1239–51. 

Beltran, C.M. & Calera Belmonte, A. 2001. Irrigated Crop Area Estimation Using Landsat TM Imagery in La 
Mancha, Spain. Photogrammetric Engineering and Remote Sensing, 67(10): 1177–1184. 

Bhatta, B. 2008. Remote Sensing and GIS. Oxford University Press: Oxford, UK. 

Bontemps, S., Arias, M. et al. 2015. Building a Data Set over 12 Globally Distributed Sites to Support the 
Development of Agriculture Monitoring Applications with Sentinel-2. Remote Sensing, 7(9): 16062–16090. 

Bontemps, S., Herold, M., Kooistra, L., van Groenestijn, A., Hartley, A., Arino, O., Moreau, I. & 
Defourny, P. 2012. Revisiting land cover observation to address the needs of the climate modeling community. 
Biogeosciences, 9(6): 2145–2157.

Breiman, L. 1984. Classification and Regression Trees. CRC Press: Boca Raton, FL, USA. 

Breiman, L. 2001. “Random Forests.” Machine Learning, 45(1): 5–32. 

Brown de Colstoun, E.C., Story, M.H., Thompson, C., Commisso, K., Smith, T.G. & Irons, J.R. 2003. 
National Park Vegetation Mapping Using Multitemporal Landsat 7 Data and a Decision Tree Classifier. Remote 
Sensing of Environment, 85(3): 316–27. 

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H. & Rosen, D.B. 1992. Fuzzy ARTMAP: A 
Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps. IEEE 
Transactions on Neural Networks, (35): 698–713. doi



Handbook on remote sensing for agricultural statistics 51

Carreiras, J.M.B., Pereira, J.M.C., Campagnolo, M.L. & Shimabukuro, Y.E. 2006. Assessing the 
Extent of Agriculture/Pasture and Secondary Succession Forest in the Brazilian Legal Amazon Using SPOT 
VEGETATION Data. Remote Sensing of Environment, 101(3 2006): 283–98. 

Champagne, C., McNairn, H., Daneshfar, B. & Shang, J.L. 2014. A Bootstrap Method for Assessing 
Classification Accuracy and Confidence for Agricultural Land Use Mapping in Canada. International Journal of 
Applied Earth Observation and Geoinformation, 29: 44–52. 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M. et al. 2015. 
Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of 
Photogrammetry and Remote Sensing, 103:7–27. 

Chen, C. & Mcnairn, H. 2006. A Neural Network Integrated Approach for Rice Crop Monitoring. International 
Journal of Remote Sensing, 27(72006): 1367–93. 

Congalton, R.G., Balogh, M., Bell, C., Green, K., Milliken, J.A. & Ottman, R. 1998. Mapping and 
Monitoring Agricultural Crops and Other Land Cover in the Lower Colorado River Basin. Photogrammetric 
Engineering and Remote Sensing, 64(11): 1107–1114. 

Cortes, C. & Vapnik, V. 1995. Support-Vector Networks. Machine Learning, 20(3): 273–297. 

Cutler, D.R., Edwards, T.C., Beard, K.B., Cutler, A., Hess, K.T., Gibson, J. & Lawler, J.J. 2007. Random 
Forests for Classification in Ecology. Ecology, 88(11 2007): 2783–92. 

Davidson, A.M. 2016. Review of satellite image classification methods. Internal document. Agriculture and 
Agri-Food Canada: Ottawa.

DeFries, R.S., Hansen, M.C. & Townshend, J.R.G. 2000. Global Continuous Fields of Vegetation 
Characteristics: A Linear Mixture Model Applied to Multi-Year 8 Km AVHRR Data. International Journal of 
Remote Sensing, 21(6–7 January 1, 2000): 1389–1414. 

DeFries, R.S. & Chan, J.C.W. 2000. Multiple Criteria for Evaluating Machine Learning Algorithms for Land 
Cover Classification from Satellite Data. Remote Sensing of Environment, 74(3 2000): 503–15. 

Defourny, P. & and Bontemps S. 2012a. Revisiting Land-Cover Mapping Concepts. In Giri, C. (ed.), Remote 
Sensing of Land Use and Land Cover (pp. 45–64), CRC Press: Boca Raton, FL, USA. 

Defourny, P., Bontemps, S., Mayaux, P., Herold, M. & Bontemps, S. 2012b. Global Land-Cover Map 
Validation Experiences: Toward the Characterization of Uncertainty. In Giri, C. (ed.), Remote Sensing of Land 
Use and Land Cover (pp. 207-224), CRC Press: Boca Raton, FL, USA. 

Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., Leroy, M., et al. 2006. 
GLOBCOVER: a 300 m global land cover product for 2005 using Envisat MERIS time series. In Kerle, N. & 
Skidmore, A., Proceedings of the ISPRS Commission VII mid-term symposium, Remote sensing: from pixels to 
processes (pp. 8–11). 

Defourny, P., Bontemps, S., Bellemans, N., Cara, C. et al. 2016. Nationwide demonstration cases of Sentinel-2 
satellite exploitation towards early crop area indicator. Paper prepared for the Seventh International Conference 
on Agriculture Statistics (ICAS VII), 26–28 October 2016. Rome. 



Handbook on remote sensing for agricultural statistics52

Denègre, J. 2013. Thematic Mapping From Satellite Imagery: A Guidebook. Elsevier. 

Deschamps, B., McNairn, H., Shang, J. & Jiao, X. 2012. Towards Operational Radar-Only Crop Type 
Classification: Comparison of a Traditional Decision Tree with a Random Forest Classifier. Canadian Journal of 
Remote Sensing, 38(1): 60–68. 

Desclée, B., Bogaert, P. & Defourny, P. 2006. Forest change detection by statistical object-based method. 
Remote Sensing of Environment, 102: 1–11. 

DiGregorio, A. 2013. A cropland nomenclature conform to the FAO Land Cover Meta-Language. SIGMA 
Technical Report. 

Di Gregorio, A. & Leonardi, U. 2016. Land Cover Classification System: User manual. Software version 3. 
Available at: http://www.fao.org/3/ai5428e.pdf. Last accessed on 10 June 2017.

Duveiller G., Defourny P., Desclée B. & Mayaux P. 2008. Deforestation in Central Africa: estimates at 
regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. 
Remote Sensing of Environment, 112: 1969–1981.  

Duveiller, G. & Defourny, P. 2010. A conceptual framework to define the spatial resolution requirements for 
agricultural monitoring using remote sensing. Remote Sensing of Environment, 114: 2637–2650. 

Duro, D.C., Franklin, S.E. & Dubé, M.G. 2012. A Comparison of Pixel-Based and Object-Based Image 
Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using 
SPOT-5 HRG Imagery. Remote Sensing of Environment 118: 259–72. 

Enderle, W. & Weih, J.C. 2005. Integrating Supervised and Unsupervised Classification Methods to Develop a 
More Accurate Land Cover Classification. Journal of the Arkansas Academy of Science, 59: 65–73. 

Ernst, C., Mayaux, P., Verhegghen, A., Bodart, C., Musampa, C. & Defourny, P. 2013. National forest cover 
change in Congo Basin : deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 
2005. Global Change Biology, (194): 1173-1187. 

Foody, G.M. 2008. RVM- based Multi- class Classification of Remotely Sensed Data. International Journal of 
Remote Sensing, 29(6 ): 1817–23. 

———. Supervised Image Classification by MLP and RBF Neural Networks with and without an Exhaustively 
Defined Set of Classes. 2004. International Journal of Remote Sensing, 25(15): 3091–3104. 

Foody, G.M., Boyd D.S. & Sanchez- Hernandez, C. 2007. Mapping a Specific Class with an Ensemble of 
Classifiers. International Journal of Remote Sensing, 28(8): 1733–46. 

Foody, G.M. & Mathur, A. 2004. A Relative Evaluation of Multiclass Image Classification by Support Vector 
Machines. IEEE Transactions on Geoscience and Remote Sensing, 42(6): 1335–43. 

Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H., Woodcock, C.E. et 
al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sensing of Environment, 
83(1–2): 287–302. 



Handbook on remote sensing for agricultural statistics 53

Friedl, M.A. & Brodley, C.E. 1997. Decision Tree Classification of Land Cover from Remotely Sensed Data. 
Remote Sensing of Environment, 61(): 399–409. 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. & Huang, X. 2010. 
MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote 
Sensing of Environment, 114(1): 168–82. 

Fritz, F., Se, L. & Mc Callum, I. 2015. Mapping global cropland and field size. Global Change Biology, 21: 
1980–1992. 

Frizzelle, B.G. & Moody, A. 2001. Mapping Continuous Distributions of Land Cover. Photogrammetric 
Engineering and Remote Sensing, 67(6): 693–705.  

Ghimire, B., Rogan, J. & Miller, J. 2010. Contextual Land-Cover Classification: Incorporating Spatial 
Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic. Remote Sensing 
Letters 1(1): 45–54. 

Ghimire, B., Rogan, J., Rodríguez Galiano, V., Panday, P. & Neeti, N. An Evaluation of Bagging, Boosting, 
and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA. GIScience & Remote 
Sensing, 49(5): 623–643. 

Giri, C.P. 2012. Remote Sensing of Land Use and Land Cover: Principles and Applications. CRC Press: Boca 
Raton, FL, USA. 

Gislason, P.O., Benediktsson, J.A. & Sveinsson, J.R. 2006. Random Forests for Land Cover Classification. 
Pattern Recognition in Remote Sensing (PRRS 2004) 27(4): 294–300. 

Glanz, H., Carvalho, L., Sulla-Menashe, D. & Friedl, M.A. 2014. A Parametric Model for Classifying 
Land Cover and Evaluating Training Data Based on Multi-Temporal Remote Sensing Data. ISPRS Journal of 
Photogrammetry and Remote Sensing, 97: 219–28. 

Gómez, C., White, J.C. & Wulder, M.A. 2016. Optical Remotely Sensed Time Series Data for Land Cover 
Classification: A Review. ISPRS Journal of Photogrammetry and Remote Sensing, 116: 55–72. 

Hansen, M., Dubayah, R. & Defries, R. 1996. Classification Trees: An Alternative to Traditional Land Cover 
Classifiers. International Journal of Remote Sensing, 17(5): 1075–81. 

Hansen, M. 2012. “Classification Trees and Mixed Pixel Training Data.” In Giri, C. (ed.), Remote Sensing of 
Land Use and Land Cover (pp. 127–36), CRC Press: Boca Raton, FL, USA.  

Huang, C., Davis, L.S. & Townshend, J.R.G. 2002. An Assessment of Support Vector Machines for Land 
Cover Classification. International Journal of Remote Sensing 23(4): 725–49. 

Huang, X. & Jensen, J.R. 1997. A Machine-Learning Approach to Automated Knowledge-Base Building for Remote 
Sensing Image Analysis with GIS Data. Photogrammetric Engineering and Remote Sensing, 63(10): 1185–94. 

Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre Canto, G., Bontemps, 
S., Defourny, P. & Koetz, B. 2015. Assessment of an Operational System for Crop Type Map Production Using High 
Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sensing, 7(9): 12356–12379. 



Handbook on remote sensing for agricultural statistics54

Joint Experiment of Crop Assessment and Monitoring (JECAM). 2014. JECAM Guidelines: Definition of the 
Minimum Earth Observation Dataset Requirements. JECAM Standards documents. Available at http://www.jecam.
org/JECAM_EO_Guidelines_v1_0.pdf. Accessed on 10 June 2017.Jensen, J.R. 1986. “Introductory Digital Image 
Processing: A Remote Sensing Perspective”. SciTech Connect, University of South Carolina, Columbus, USA. 1 
January 1986. Available at: http://www.osti.gov/scitech/biblio/5166368. Last accessed on 10 June 2017.

Jensen, J.R. 2016. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.  Pearson: 
Glenview, IL, USA. 

Ji, C.Y. 2000. Land-Use Classification of Remotely Sensed Data Using Kohonen Self-Organizing Feature Map 
Neural Networks. Photogrammetric Engineering and Remote Sensing, 66(12): 1451–60. 

Jones, H.G. & Vaughan, R.A. 2010. Remote Sensing of Vegetation: Principles, Techniques, and Applications. 
Oxford University Press: Oxford, UK – New York, USA. 

Kamusoko, C. & Aniya, M. 2009. Hybrid Classification of Landsat Data and GIS for Land Use/Cover Change 
Analysis of the Bindura District, Zimbabwe. International Journal of Remote Sensing, 30(1 2009): 97–115. 

Khatami, R., Mountrakis, G. & Stehman, S.V. 2016. A Meta-Analysis of Remote Sensing Research on 
Supervised Pixel-Based Land-Cover Image Classification Processes: General Guidelines for Practitioners and 
Future Research. Remote Sensing of Environment, 177: 89–100. 

Kotsiantis, S.B. & Pintelas, P.E. 2004. Combining Bagging and Boosting. International Journal of 
Computational Intelligence, 1(4): 324–333. 

Kumar, L., Priyakant, S., Brown, J.F., Ramsey, R.D., Rigge, M., Stam, C.A., Hernandez, A.J., Hunt 
Jr., E.R. & Reeves, M.C. 2016. Characterization, Mapping and Monitoring of Rangelands: Methods and 
Approaches. In Thenkabail, P.S. (ed.), Land Resources Monitoring, Modeling, and Mapping with Remote 
Sensing, vol. 2 (pp. 309–350). Remote Sensing Handbook series. CRC Press: Boca Raton, FL, USA. 

Laba, M., Smith, S.D. & Degloria, S.D. 1997. Landsat-Based Land Cover Mapping in the Lower Yuna River 
Watershed in the Dominican Republic. International Journal of Remote Sensing, 18(14): 3011–25. 

Lambert, M.-J., Waldner, F. & Defourny, P. 2016. Cropland Mapping over Sahelian and Sudanian 
Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sensing, 8(3): 
1–23.

Latham, J. & Rosati, I. 2016. Land Information in the Context of Agricultural Statistics. GSARS Technical 
Report GO-15-2016. Available at: http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-
Context-of-Ag-Statistics-180816.pdf. Last accessed on 10 June 2017.

Liu, C., Frazier, P. &  Kumar, L. 2007. Comparative assessment of the measures of thematic classification 
accuracy. Remote Sensing of Environment, 107(4): 606–616. 

Lu, D. & Weng, Q. 2007. A Survey of Image Classification Methods and Techniques for Improving 
Classification Performance. International Journal of Remote Sensing, 28(5): 823–70. 

Mannan, B., Roy, J. & Ray, A.K. 1998. Fuzzy ARTMAP Supervised Classification of Multi-Spectral Remotely-
Sensed Images. International Journal of Remote Sensing, 19(4): 767–74. 



Handbook on remote sensing for agricultural statistics 55

Matton, N., Sepulcre Canto, G., Waldner, F., Valero, S., Morin, D., Inglada, J., Arias, M., Bontemps, S., 
Koetz, B. & Defourny, P. 2015. An Automated Method for Annual Cropland Mapping along the Season for 
Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote 
Sensing, 7(10): 13208–13232.

Martins, S., Bernardo, N., Ogashawara, I. & Alcantara, E. 2016. Support Vector Machine Algorithm Optimal 
Parameterization for Change Detection Mapping in Funil Hydroelectric Reservoir (Rio de Janeiro State, Brazil). 
Modeling Earth Systems and Environment, 2(3 2016). 

Melgani, F. & Bruzzone, L. 2004. Classification of Hyperspectral Remote Sensing Images with Support Vector 
Machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778–90. 

Mountrakis, G., Watts, R., Luo, L. & Wang, J. 2009. Developing Collaborative Classifiers Using an Expert-
Based Model. Photogrammetric Engineering and Remote Sensing, 75(7): 831–43. 

Mountrakis, G., Im, J. & Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS Journal of 
Photogrammetry and Remote Sensing, 66(3): 247–59. 

Pal, M. & Mather, P.M. 2005. Support Vector Machines for Classification in Remote Sensing. International 
Journal of Remote Sensing, 26(5): 1007–1011. 

Pal, M. & Mather, P.M. 2006. Some Issues in the Classification of DAIS Hyperspectral Data. International 
Journal of Remote Sensing, 27(14 ): 2895–2916. 

Pal, M. & Mather, P.M. 2003. An Assessment of the Effectiveness of Decision Tree Methods for Land Cover 
Classification. Remote Sensing of Environment, 86(4 August 30, 2003): 554–65. 

Pal, N.R., Laha, A. & Das, J. 2005. Designing Fuzzy Rule Based Classifier Using Self‐organizing Feature 
Map for Analysis of Multispectral Satellite Images. International Journal of Remote Sensing, 26(10): 2219–40. 

Qiu, F. & Jensen, J.R. 2004. Opening the Black Box of Neural Networks for Remote Sensing Image 
Classification. International Journal of Remote Sensing, 25(9): 1749–68. 

Radoux, J. & Defourny, P. 2008. Quality assessment of segmentation results devoted to object-based 
classification. In Blaschke, T., Lang, S. & Hay, G.J. (eds), Object-Based Image Analysis : Spatial concepts for 
knowledge driven remote sensing applications (pp. 257–271), Springer-Verlag: Berlin – Heidelberg. 

Rigol-Sanchez, J.P., Chica-Olmo, M. & Abarca-Hernandez, F. 2003. Artificial Neural Networks as a Tool for 
Mineral Potential Mapping with GIS. International Journal of Remote Sensing, 24(5): 1151–56. 

Rodriguez-Galiano, V. & Chica-Olmo, M. 2012. Land Cover Change Analysis of a Mediterranean Area in 
Spain Using Different Sources of Data: Multi-Seasonal Landsat Images, Land Surface Temperature, Digital 
Terrain Models and Texture. Applied Geography, 35(1–2): 208–18. 

Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C. & Roberts, D. 2008. Mapping Land-Cover 
Modifications over Large Areas: A Comparison of Machine Learning Algorithms. Earth Observations for 
Terrestrial Biodiversity and Ecosystems Special Issue, 112(5): 2272–83. 



Handbook on remote sensing for agricultural statistics56

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. 1986. Learning Representations by Back-Propagating Errors. 
Nature, 323(6088): 533–36. 

Sluiter, R. & Pebesma, E.J. 2010. Comparing Techniques for Vegetation Classification Using Multi- and 
Hyperspectral Images and Ancillary Environmental Data. International Journal of Remote Sensing, 31(23): 
6143–61. 

Smola, A. & Schoelkopf, B. 1998. A Tutorial on Support Vector Regression. NeuroCOLT2 Technical Report 
Series, NC2-TR-1998-030. Available at: http://citeseer. ist. psu. edu/smola98tutorial. html. Last accessed on 10 
June 2017.

Thenkabail, P.S., Knox, J.W., Ozdogan, M., Gumma, M.K., Congalton, R.G., Wu, Z., Milesi, C., Finkral, 
A., Marshall, M., Mariotto, I., You, S. Giri, C. & Nagler, P. 2012. Assessing future risks to agricultural 
productivity, water resources and food security: how can remote sensing help?. Photogrammetric Engineering 
and Remote Sensing, August 2012 Special Issue on Global Croplands: Highlight Article, 78(8): 773–782. 

Ustuner, M. 2015. Application of Support Vector Machines for Landuse Classification Using High-Resolution 
RapidEye Images: A Sensitivity Analysis. European Journal of Remote Sensing:403. 

Valero, S., Morin, D., Inglada, J., Sepulcre Canto, G., Arias, M., Hagolle, O., Dedieu, G., Bontemps, S., 
Defourny, P. & Koetz, B. Production of a Dynamic Cropland Mask by Processing Remote Sensing Image Series 
at High Temporal and Spatial Resolutions. Remote Sensing, 8(55): 1–21. 

Van der Linden, S., Rabe, A., Okujeni, A. & Hostert, P. 2009. Image SVM Classification, Manual for  
Application: Image SVM Version 2. Available at: http://dev.geo.hu-berlin.de/trac/enmap-box/export/8/enmap-
box/tags/Save20150115/SourceCode/applications/imageSVM/_help/svc_manual.pdf. Last accessed on 10 June 
2017. Publication of the Humboldt-Universität zu Berlin, Germany.

Vapnik, V.N. 2000. The Nature of Statistical Learning Theory. 2nd edition. Statistics for Engineering and 
Information Science. Springer: New York, USA. 

Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M. Pranovi, F., De Leo, G.A. & Torricelli, P. 2011. 
Application of a Random Forest Algorithm to Predict Spatial Distribution of the Potential Yield of Ruditapes 
Philippinarum in the Venice Lagoon, Italy. Ecological Modelling, 222(8): 1471–1478. 

Waldner, F., Fritz, S., Lamarche, C., Bontemps, S. & Defourny, P. 2016. A Unified Cropland Layer at 250 m 
for Global Agriculture Monitoring. Data, 1(1), no. 3: 1–13. 

Waldner, F., De Abelleyra, D., Veron, S.R., Zhang, M., Wu, B., Plotnikov, D., Bartalev, S., Lavreniuk, 
M., Skakun, S., Kussul, N., Le Maire, G., Dupuy, S., Jarvis, I, & Defourny, P. 2016. Towards a set of 
agrosystem-specific cropland mapping methods to address the global cropland diversity. International Journal of 
Remote Sensing, 37(14): 3196–3231. 

Waldner, F., Fritz, S., Di Gregorio, A. & Defourny, P. 2015. Mapping Priorities to Focus Cropland Mapping 
Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sensing, 7(6): 
7959–7986. 

Waske, B. & Benediktsson, J.A. Fusion of Support Vector Machines for Classification of Multisensor Data. 
IEEE Transactions on Geoscience and Remote Sensing, 45(12): 3858–3866. 



Handbook on remote sensing for agricultural statistics 57

Waske, B. & Braun, M. 2009. Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR 
Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, Theme Issue: Mapping with SAR: Techniques 
and Applications, 64(5): 450–457. 

Wilkinson, G.G. 1997. Open Questions in Neurocomputing for Earth Observation. In Kanellopoulos, I., 
Wilkinson, G.G., Roli, F. & Austin, J. (eds), Neurocomputation in Remote Sensing Data Analysis (pp. 3–13). 
Springer: Berlin–Heidelberg. 

Xiuwan, C. Using Remote Sensing and GIS to Analyse Land Cover Change and Its Impacts on Regional 
Sustainable Development. International Journal of Remote Sensing, 23(1): 107–124. 

Zhong, Y., Zhang, L., Gong, J. & Li, P. 2007. A Supervised Artificial Immune Classifier for Remote-Sensing 
Imagery. IEEE Transactions on Geoscience and Remote Sensing, 45(12): 3957–3966. 

Zuo, R. & Carranza, E.J.M. 2011. Support Vector Machine: A Tool for Mapping Mineral Prospectivity. 
Computers & Geosciences, 37(12): 1967–1975.



Handbook on remote sensing for agricultural statistics58



Handbook on remote sensing for agricultural statistics 5959

Chapter 3

Use of remote sensing for the 
design of sampling frames 
Javier Gallego

The topic of this chapter overlaps to a great extent with that covered in chapters 4 and 6 of the recent GSARS 
handbook on Master Sampling Frames for Agricultural Statistics (GSARS, 2015). Chapter 4 of that handbook 
provides guidelines on the use of Geographic Information Systems (GIS), Global Navigation Satellite Systems 
(GNSS, better known as GPS) and remote sensing, while chapter 6 focuses on Area Sampling frames (ASFs). 
Readers are invited to consult the aforementioned handbook for additional details; however, the present chapter is 
intended to be self-explanatory.  

Most applications of remote sensing to agricultural statistics correspond to optical sensors, which are generally 
classified on the basis of their spatial resolution. This is closely linked with the repetitiveness of image acquisition: 
VHR satellite images, with a pixel size between approximately 0.5 m and 2.5 m, are usually too expensive for 
exhaustive coverage unless publicly accessible layers such as Google Earth or Bing are considered. The acquisition 
year of these images is often highly heterogeneous, thus making them of limited use for crop area estimation in 
a specific year or season. However, they can be very useful in building a sampling frame unless the agricultural 
landscape in question is subject to rapid change. 

Several images with a resolution between 10 and 30 m are now available free of charge, and full coverages are 
feasible. However, they can be used to build a sampling frame only if the dominant plot size is not excessively small 
and the parcel structure in the landscape can be distinguished. 

Other types of images, in particular radar images, appear to be promising and in continuous improvement; however, 
to date, their only major validated application to agriculture is in monitoring paddy rice.

3
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3.1. List frames and area frames 

Sampling frames for agricultural statistics are often classified into two main categories: list sampling frames 
(LSF) and ASFs. An LSF may be an agricultural census or a list of farms, holdings or households obtained from 
administrative registers. In an ASF, the sampling units are elements of geographic space: points, lines (transects) 
or polygons (segments). 

The difference between LSFs and ASFs is far from clear: 
•	 List frames often use Enumeration Areas (EAs) as Primary Sampling Units (PSUs). If the boundaries of EAs 

are available (hopefully as a GIS layer), the first stage of the LSF can be treated as an ASF; 
•	 The first time a survey is run on an ASF, a list of farms is associated to the sampled points or segments. Although 

identifying the farms associated to points or segments may be difficult in the first year, the list thus built can be 
treated as a list sample with probability proportional to size (PPS) and is easier to update in consecutive years 
than the full list of farms in the EA. 

Remote sensing plays a major role with regard to ASFs, while for the more traditional LSFs, its role is more modest. 
However, the usability of remote sensing for LSFs is not negligible, in particular when a GIS layer of EA boundaries 
is available and a stratification can integrate the land cover information derived from remote sensing.  

3.1.1. 	S tratification
Defining a stratification is probably the most common application of remote sensing to agricultural sampling frames. 
Remote-sensing-based stratifications may be conceived in various ways for ASFs. For LSFs, the applicability is 
more limited, generally to their “area frame” aspect. In particular, images can be used to stratify EAs when they are 
used as PSUs and a GIS layer of EAs is available. 

Classified images or land cover maps elaborated from images can be used to define strata according to criteria that 
can be linked to the overall percentage of cropland or to the dominance of specific crops. For example, strata can 
be defined as the sets of units having over 60 percent of cropland, 30 to 60 percent of cropland, 10 to 30 percent of 
cropland or less than 10 percent of cropland. Certain strata may also be associated to specific crops, such as the set 
of units in which olive trees occupy more than 50 percent, or in which there is a strong presence of irrigated land. 
If classified images or land cover maps are strongly biased, this will reduce the efficiency of stratification in terms 
of variance; however, it will not introduce bias on the estimators generated on the basis of a survey using such a 
stratification. Bias in the area estimators may derive from the presence of systematic mistakes in the observations 
made by surveyors, but not from inaccurate stratification.  

3.1.2. 	I naccuracies in stratification
Often, the survey observation of a sample unit is not consistent with the definition of the stratum to which it belongs. 
For example, in the Sétif example (section 2.3 below), a segment i was sampled in stratum 3,  defined as having 
between 40 and 70 percent of cropland. Suppose that the field observation reveals that the total crop area in the 
segment is actually 25 percent. The survey manager may believe that this segment was wrongly allocated in the 
stratification and that the stratification will be improved if this segment is reallocated to stratum 2. This would be 
wrong and may introduce a significant bias in the estimators because the rule cannot be applied to similar segments 
that are not in the sample (and thus upon which no information available). It is important to respect the principle that 
the stratification takes place prior to sampling and that the quality of stratification is the same within and outside 
the selected sample. Identifying frequent misclassifications in the sample may raise concerns as to whether the 

Nicolas Deffense
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stratification should be reviewed; in this case, it should be reviewed for future surveys with a homogeneous rule 
and level of information on the territory. The stratification cannot be reviewed on the basis of information collected 
on the sample alone. 

3.2. Area sampling frames 

3.2.1. 	Frames of segments with physical boundaries
The segments of an area frame can be delimited by physical boundaries, such as rivers or roads. This was the choice 
made by the U.S. Department of Agriculture (USDA) in the 1930s, and remains operational to this day (Davies, 
2009). The delineation of sampling units is based to a large extent on photointerpretation. The availability of crop 
classification layers1 has introduced a new tool for stratification (Boryan and Yang, 2012); however, this does not 
eliminate the time- and resource-intensive visual task of identifying boundaries. The amount of photointerpretation 
can be reduced by introducing an intermediate step in which PSUs are delineated and sampled. The PSUs selected 
are subdivided into segments, and one of them is selected in the second step (figure 1). Readers should note that this 
scheme is not a proper two-stage sampling system because only one segment per PSU is selected in the second step. 

In defining sampling units, photointerpretation is essential for area frames of segments having physical boundaries. 
At the same time, it is capable of providing excellent information for stratification. However, this type of area frame 
is seldom a good solution in developing countries with small agricultural plots. 

Figure 1. �A PSU having physical boundaries and within which a segment is 
selected.

1    https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php.



Handbook on remote sensing for agricultural statistics62

3.2.2. 	Frames on regular grids
One alternative is to define segments by applying a geometric grid on a given cartographic projection, usually 
square segments. When defining the frame, square segments usually provide similar accuracy levels as segments 
with physical boundaries, with lower costs. A first definition of such an area frame can be a simple overlay of a 
square grid onto the administrative boundaries. On the borders, small polygons arise that can be eliminated if their 
area is less than half the area of a full grid cell. The generated undercover can be approximately compensated for 
by attributing the weight of a full cell to the incomplete boundary cells retained. In the example of figure 2, this 
introduces a very low bias of only 0.05 percent in the overall area. For these operations, no use of remote sensing 
has been made, but rather only of basic GIS operations. 

Figure 2. �A square grid on an administrative region. Right: square grid after 
eliminating small grid cell pieces. 

In the example above, a homogeneous grid size was used. A first level of refinement may consist in adapting the 
grid size to the plot size. Several approaches can be used for this purpose, such as using a remote-sensing-derived 
map of dominant field size. Figure 3 represents a global field size map that can be used (Fritz et al., 2015), although 
some users may prefer to use their own local knowledge to refine or improve the field size mapping.
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Figure 3. Global map of dominant field size. 

Another option is starting with a large grid size and viewing the sampled cells on a very-high-resolution (VHR) 
image. A rule can be defined to reduce the area to be observed if the number of fields is larger than a given threshold 
(figure 4). This partial observation does not introduce any bias in area estimation as long as the rule is fixed (for 
example, by retaining only the central part of the large segment) and applied independently of the land cover 
observed. However, it does introduce complications in the computation of variances of the estimators.

A frequent rule of thumb on the suitable size of segments is that the average number of fields or land cover patches 
per segment should be between 10 and 20, so that the working time required for the field visit is less than half a 
day (Taylor et al., 1997). 
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Figure 4. Reduced segment due to an excessive number of fields. 

3.2.2.1. Stratification with existing national or regional land cover maps 
If land cover maps or classified satellite images are available, it is possible to compute a cropland area indicator for 
each cell of the grid on the basis of the available information. The result of this computation is usually of insufficient 
quality to be termed “statistics”; however, it is very useful to stratify the territory. This type of stratification is 
particularly useful for the cheap sampling frames based on regular grids. For area frames based on segments with 
physical boundaries, this type of stratification is generally unnecessary, because the proportion of cropland or of 
specific crop types within each PSU may be visually assessed when their perimeters are delineated. 
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Figure 5. Overlay of a land cover map onto a sampling grid.  

Figure 5 illustrates the overlay of an available land cover map onto an image. In this example, the map is the 
CORINE Land Cover (CLC) map. As may be seen, the map is not perfect and contains classes with a vague label, 
such as “complex land cover”. In any case, this type of map can be used to attribute a cropland index to each unit 
of the sampling grid (in this case, squares). The index may be, for example:

Arable land index=arable+0.4*complex+0.2*perm.crops+0.2*grassland
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Figure 6. �A sampling grid overlaid onto a high-resolution land cover map 
(left) and a derived stratification (right).  

Figure 6 illustrates the definition of this type of stratification for the area frame of figure 2. In this example, the 
area of permanent crops is used to compute the index because it has been observed that the polygons labelled as 
permanent crops in the CLC actually contain a certain amount of arable land. The index can be further refined by 
introducing the knowledge that the user may have of the land cover map and the thresholds to define the strata. 
Despite the imperfections of the CLC and of the index, this method of stratification has proven to yield a relative 
efficiency of approximately 2, for major crops in Spain (Gallego et al., 1999)

Similar land cover maps are available in many parts of the world. For example, the Africover project has produced 
a large number of maps for African countries (Latham, 2009). Many Africover land cover maps should be updated, 
but even outdated maps may provide a good basis for stratification2. The main risk of using outdated maps is that the 
sampling plan usually excludes the stratum labelled as “non-cropland”, while a significant change from non-cropland 
to cropland may have occurred. This factor will generate an important bias in the estimations if it is ignored by the 
statistician. A possible way to address this issue in the absence of resources for a full update of the map is to use a 
two-phase sampling for the non-cropland stratum.  

3.2.3. 	Stratification based on global cropland maps 
Figure 7 provides an example of stratification defined in Sétif (Algeria) with the help of a cropland probability 
map that was obtained comparing different  existing land cover maps (Fritz and See, 2008). In this example, the 
sampling cells were rectangles of 1 500 m x 600 m. In each of the sampled cells, two rows of six points were to be 
visited (incomplete observation of segments in a two-stage sampling scheme). For the stratification, each 1 500 m 
x 600 m cell was given a “crop probability index”, which was computed from the map by weighted average. The 
meaning of this crop probability index was not entirely clear and did not correspond to an expected proportion of 
cropland; nonetheless, it still led to a reasonable stratification defined by the intervals 0–10 percent, 10–40 percent, 
40–70 percent and greater than 70 percent. 

2    http://www.fao.org/geonetwork/srv/en/main.search?title=africover%20landcover.
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Figure 7. �Stratification with a crop probability map and a sampling grid of 
rectangles in Sétif (Algeria).  

A similar global product is the FAO Global Land Cover-SHARE3. This database may be considered more complete, 
in the sense that it estimates the proportion of 11 major land cover types in each pixel.  

3.2.4. 	Stratification on more detailed data relating to a previous year
In some countries, more detailed GIS layers are available, if not necessarily up-to-date. The USDA has developed 
a stratification method based on the cropland data layer (Boryan and Yang, 2012), consisting in a large mosaic of 
classified images. In some cases, detailed mappings at the parcel level may have been produced some years earlier. 
This type of layer has been used, for example, for stratification in a test pilot conducted in the Siliana Governorate in 
Tunisia (Sghaier, 2016). The procedure is the same as that illustrated above for coarser-resolution products: for each 
element of the sampling frame (usually a grid cell), an indicator of arable land or cropland proportion is estimated 
by weighted average of the available map proportions; the stratification is then defined by intervals of the indicator 
or on the basis of alternative indicators linked to specific crops. Figure 8 shows an example of a classified image 
on a grid of square segments that can be used for stratification. 

3    http://www.glcn.org/databases/lc_glcshare_en.jsp.
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Figure 8. A grid of square segments overlaid onto a classified image.  

3.2.5. 	Photointerpretation of public domain images and crowdsourcing 
The availability of free VHR images in tools such as Google Earth or Bing suggests the opportunity of their use for 
collecting agricultural information. However, the production of a land cover map from these with standard methods 
and a relatively fine spatial resolution requires a great deal of work by skilled photointerpreters and therefore a 
considerable budget. 

Crowdsourcing can provide a cheap alternative and is worth exploring, without underestimating its limitations but 
rather identifying ways to limit their impact. The Geo-wiki network is making interesting progress on tools to exploit 
volunteer photointerpreters4 in this regard:
•	 Volunteers may be not able to edit a polygon layer. On the other hand, allowing a large number of people to 

modify the polygon geometry can be risky. Instead of asking photointerpreters to delineate polygons, they can be 
asked to assess predefined polygons (grid cells or polygons that have been determined with a pattern recognition 
software). The question put to volunteers may be very simple; with regard to figure 9, it could be, for example, 
“Do you see any cropland inside the rectangle?” However, a slightly more precise question will be more useful 
for the purposes of stratification, such as “Is the percentage of cropland you see in the rectangle very high, high, 
medium, low, or zero?” A self-assessment of confidence may also be informative: “Is your level of confidence 

4    http://www.laco-wiki.net/, http://www.geo-wiki.org/.
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high, reasonable, or are you not sure at all?” With this type of questions, the photointerpretation time per cell 
ranges between 30 seconds and one minute, if good Internet access is available (and this is a critical limiting 
factor), such that a volunteer working three hours per day can assess between 150 and 300 cells during that time. 

•	 A more elaborated system is illustrated in figure 10. The landscape had been previously divided into polygons 
with an automatic segmentation software. Each intersection of these polygons with the current grid cell is 
labelled by the photointerpreter as cropland or non-cropland. A general opinion of the reliability level is also 
provided. The photointerpretation tool will compute an index of likely cropland proportions that are useful for 
stratification. 

•	 Assessing the reliability of each volunteer is essential. The Geo-wiki network examines the photointerpretation 
provided by different volunteers or by volunteers and experts to attribute reliability scores. When volunteers 
have a consistently high score, they receive a higher weight in attributing a score to other volunteers. 

•	 Motivating volunteers is also important. Rewards such as smartphones to the top photointerpreter of the month 
are being tested, with promising results. 

It may not be feasible to perform a full stratification with the high-score volunteers available. Suppose, for example, 
that the dominant field size is between 0.5 ha and 1 ha. A suitable segment size may be 300 m x 300 m. If the 
agricultural strata of the country occupy 300 000 km2, more than 3 million cells would have to be photointerpreted 
to conduct a full stratification. In this case, a two-phase sampling scheme similar to the method used in the EU 
LUCAS survey may be a reasonable solution. For example, a systematic first-phase sample of one cell out of a 5 x 
5 grid would provide a more reasonable sample size of approximately 130 000 cells to be photointerpreted.   

Figure 9. A simple screen design for crowd photointerpretation. 
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Figure 10. �A more elaborate photointerpretation basis, with polygons 
previously delineated by an automatic segmentation software.  

3.2.6. 	Area frames of clustered points
For area frames of (clustered or unclustered) points or segments with geometric shapes, images are not necessary 
to define the sampling units, but may be essential for: 
•	 Stratification, in particular when using a two-phase sampling for points with stratification based on 

photointerpretation of the first-phase sample; and
•	 Field survey documents: when the location of a point on the image fails to correspond to the location provided 

by GPS, it is preferable to give precedence to the image, which is more stable and traceable, especially if land 
cover change is an important target. 

The two main types of area sampling frames of points are clustered and unclustered points. Frames of clustered 
points correspond to a traditional two-stage sampling scheme. If preferred, these may also be seen as frames 
of segments with an incomplete observation of the segment: instead of delineating all the fields and patches in 
the segment, only the land cover types (crop or other land cover classes) corresponding to a sample of points 
are recorded. The sample of points within regular segments is usually a regular grid (figure 11). This solution 
significantly reduces the workload while entailing only a small degradation of accuracy. An example of this approach 
is the French TER-UTI survey (FAO, 1998), which has been operational since the 1960s. TER-UTI uses a 6 x 6 
points cluster with a distance between points of 300 m; however, when the dominant field size is smaller, a distance 
of 100 m may be more cost-efficient.
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Figure 11. �A regular grid of points on a square segment for a two-stage 
sampling scheme. 

The stratification of such a sampling frame can be performed with the same procedures illustrated above for 
area frames of segments on a regular grid: the full square or rectangle is allocated to a stratum on the basis of the 
information available, even if only a grid of points inside it is surveyed.

3.2.7. 	 Area frames of unclustered points
Unclustered points are generally used with a two-phase sampling technique (which is not to be confused with two-
stage sampling): a large first-phase sample is selected to build an incomplete stratification, which is then used to 
select the final sample. Examples of this approach are the Italian Agrit survey after the modification introduced in 
2002 (Martino, 2003) and the Eurostat LUCAS survey (Gallego and Delincé, 2010). 
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The comparison of results and costs relating to the old and the new versions of Agrit (Martino, 2003; Gallego and 
Delincé, 2010) indicates that unclustered points are capable of providing better cost-efficiency for area frame surveys 
in the European context (in light of the landscape and road networks prevailing therein); however, the results of the 
comparison are likely to be very different in developing countries, due to the greater impact of travelling expenses. 

Figure 12. Stratified first-phase sample in central Europe.  

The main steps are the following: 
•	 Select a large sample of points (first-phase sample). In Agrit and LUCAS, regular grids with more than 1 000 

000 points each were selected. 
•	 The first-phase sample was stratified by means of photointerpretation with a simple nomenclature (figure 12). 
•	 A subsample is selected with a sampling rate that depends on the survey’s priorities.  
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3.2.8. 	Comparing frames of segments with frames of points
Data collection and processing is easier for points than for area segments. Groundwork with segments requires a 
delineation of fields within the segment and digitizing them before area estimates are computed. This requires a 
certain amount of time (which may range from a few weeks to several months) for large samples and, consequently, 
delays for the production of estimates. The improvement of low-cost navigation devices, including smartphones, 
has had a greater impact on improving the cost-efficiency of point surveys rather than for segments.

Area segments provide better information for geometric co-registration, to overlay the ground information on 
satellite images; they are also capable of giving better information on plot structure and size. This may be useful for 
agri-environmental indicators, such as landscape indexes.  Segments  may also be better adapted for combination 
with satellite images with a regression estimator (Carfagna, 2007).

Comparisons between segments with physical boundaries and square segments have shown that the two approaches 
yield a very similar level of accuracy. Square segments would be preferable, since building the relative sampling 
frame is much cheaper (González et al., 1991).  

3.2.9. 	Area frames of transects 
A transect is a piece of a straight line of a certain length. It corresponds to the meaning of the word “segment” in basic 
geometry, and is used in area frame sampling because the term “segment” is given a different meaning in this context. 

Transects can be combined with point sampling. This option may be suitable for landscapes containing mostly thin 
cultivation stripes to overcome the difficulty of locating a point in such landscapes; it has been tested in a pilot 
project in China (Kerdiles et al., 2013). A point is located within an image and determines the selection of a block 
of stripes. The point is given the proportion of each crop along a transect perpendicular to the stripes estimated in 
practice by step-counting on the border of the large plot (figure 13). This approach has drawbacks that are yet to be 
assessed, but may provide a practical solution for this difficult type of landscape. 
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Figure 13. �A transect generated by a sampled point to survey parcels with thin 
crop stripes.  

Transects are often used in environmental surveys to estimate the length of linear elements (de Vries, 1986; Gallego 
and Delincé, 2010), but are seldom employed in the context of agricultural statistics. 

In principle, a transect has only one dimension (its width is 0); however, the term is also used to indicate long and 
thin polygons, for example measuring 100 m x 50 km. This type of sampling units are well-adapted to low-altitude 
flights (Jolly and Watson, 1979). They have been used for nomadic livestock estimation and may be applied more 
frequently if regulations allow relatively long Unmanned Aerial Vehicle (UAV) (also known as drone) flights. 
Otherwise, small piloted aircraft should be reassessed, taking into account the improvements made to cameras (3–5 
cm resolution) and to the orthorectification of images (Gallego et al., 2016). Simulations made with data from the 
Netherlands show that thin and long stripes, which are better adapted to low-altitude flights, are much more efficient 
than square segments (figure 14). 
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Figure 14.  �Sampling scheme of stripes for a simulation study with data from 
the Netherlands.   
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3.3. Remote sensing for LSFs 

3.3.1. 	The location of a farm: a difficult problem 
The information provided by images from satellites or airplanes is closely linked to the precise location of a pixel. 
For this reason, the potential use of remote sensing for LSFs depends to a great extent on the location information 
of the elements of an LSF. The basic units of an LSF are farms or households. Although the following sections refer 
to farms, the reasoning explained can be applied to households too, to a large extent. Farms are often linked to an 
EA or other type of small administrative unit; this is often the only location information available for a farm. The 
explicit GIS representation of EAs determines the potential use of remote sensing. 

3.3.2. 	Administrative registers
In some countries, the administrative information systems allow for a good georeferenced description of each 
farm (headquarters or managed fields). The term “registers” is used to denote such detailed GIS-based information 
systems. Registers report agricultural fields or plots with the support of orthophotographic documents or satellite 
images. However, they are suitable for use in the direct production of unbiased and timely statistics only under 
specific conditions of timeliness, accuracy and completeness that are difficult to reach in practice. On the other hand, 
the parcels delineated in a register are not necessarily conceived to match plots having a single crop. However, even 
outdated or incomplete registers may provide an excellent data source to build an efficient sampling frame. This is 
more clearly applicable in ASFs rather than to LSFs.  

If a register is available, a satisfactory solution may be provided to the problem of GIS representation of a 
farm. A simpler solution is attributing to a farm the coordinates of its headquarters. However, defining the term 
“headquarters” is complicated and may have to adapt to the specific agricultural reality of each geographical area. 

3.3.3. 	Using EAs as first-stage sampling units 
GIS-based layers of small administrative areas, such as Enumeration Areas (EA) used for a census, communes, 
villages, etc. have a variety of uses that go far beyond defining a sampling frame for agricultural statistics. Compared 
to GIS administrative registers of farms, the cost of building a layer of small administrative units is much lower, 
even though it is not low in absolute terms. Building such a layer in the context of a strong agricultural statistical 
programme may be affordable, and at the same time prove useful for other territorial management tasks. For the 
purpose of agricultural statistics, such a layer of EA boundaries is useful for both list frames and area frames. 

In this chapter, the term “EA” is used in a generic way. It may correspond to EAs as used in a population or 
agricultural census, or to administrative units, such as communes or villages. Producing, updating and improving 
the GIS layers of EAs may be an important step in an agricultural survey. Several situations are possible, depending 
on the legal or operational definition of the EA: 
•	 The EA are defined on paper topographic maps. In this case, the topographic maps are first scanned to produce 

a raster image. Then, polygon boundaries are digitized with the scanned maps as a background. Each EA will 
be defined by a polygon layer (usually a single polygon). All EA layers should be georeferenced and merged in 
a single layer. The last step is correcting overlaps and missing splinters, to obtain a seamless layer. For this step, 
it is useful to have an image of the finest possible spatial resolution in the background, because EA boundaries 
often correspond to roads, rivers or other visible landscape features. 

•	 A variant of the situation above occurs when a polygon GIS layer of boundaries exists, but must be refined, 
updated or corrected. In this case, only the last steps described above apply. If the boundaries of EAs are refined 
on the basis of satellite images, it is important to ascertain first that the geometry of the images is of adequate 
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quality in terms of spatial resolution and orthorectification. In particular, at the time of writing, the quality of 
the orthorectification of the image layers available in Google Earth may be insufficient. Figure 15 illustrates 
an example of an EA where the boundaries appear to have followed physical features and may require editing. 
Checks against additional documents (cadastral maps, for example) is necessary to ensure that appropriate 
corrections are made. 

Figure 15. �Example of an EA with regard to which doubts arise as to geometric 
accuracy.  

•	 EAs are legally defined by the text description of their boundaries. At best, the formal or legal definition of an 
EA refers to the visible landscape features. In these cases, imagery is essential to convert textual descriptions 
into georeferenced boundaries. To this, office-based work and fieldwork with local experts are essential.

•	 In some cases, the legal definition is more vague and may refer to households instead of to the territory. For example, 
the specification may be provided by the mention of a small population nucleus and a generic reference to neghbouring 
households. Local administrators or extension workers are generally able to determine the EA to which a given 
household belongs, but its precise geographic delimitation may be problematic. In this case, high-resolution imagery 
is very useful as a working tool; however, the core of the task remains the interaction between the different levels 
of local and national administrators. Building a GIS layer of EAs is a major task for the good administration of the 
territory; the layer can be used for a vast range of purposes beyond agricultural surveys alone. 
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The imagery basis upon which to build, improve or update a GIS layer of EA boundaries should enable a clear 
recognition of those landscape features that define EA boundaries. Possible choices are:
•	 Orthophotographic airborne coverage; 
•	 Publicly available layers such as Google Earth or Bing – These solutions are attractive because they are accessible 

and free, although caution is required to ensure that the geometric accuracy is sufficiently homogeneous and 
the dates of the imagery are known (although the date of the images is less important than its spatial resolution, 
which should be as fine as possible); and

•	 Archives of private companies that may be accessed with a moderately priced subscription, such as Digital Globe. 

3.3.4. 	Sampling EAs with probability proportional to the area 
It is assumed here EAs are to be sampled in a country or a region for which a GIS layer of EA boundaries is available. 
It may be sought to sample EAs with a probability proportional to the geographical area Di of each EA. The standard 
approach is to apply a random PPS sampling, as illustrated in figure 17(a). A simple geographical method is to 
sample points with uniform probability and then selecting the EAs on which those points fall. However, the spatial 
layout of the sample is irregular, as often occurs in random sampling: several groups of contiguous communes 
are selected, while relatively wide areas remain empty. This drawback of random sampling is well known and is 
most easily overcome with systematic sampling. Some area frame surveys have used one-dimensional systematic 
sampling of EAs or PSUs by ordering the population with a rule linked to their location. A zig-zag ordering is often 
used for this ranking, as in the case of the USDA’s AFS (Cotter and Tomczac, 1994). Figure 16 illustrates a zig-zag 
ordering of small administrative units that have been ordered by west–east bands. In this way, the two-dimensional 
layout is converted into a one-dimensional array in which a traditional PPS systematic sampling may be applied. It 
may be seen that the irregularity of the spatial layout remains. 

Figure 16. �Ordering communes according to a zig-zag pattern prior to 
conducting a systematic sampling.  
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Figure 17. �Different PPS samples of communes in Castilla y León (Spain) with 
their geographic area as size measure.   

Two-dimensional PPS sampling can be applied with a systematic grid of points (figure 17(c)) that provides a more 
regular distribution. Such a regular geographic layout improves the efficiency (Dunn and Harrison, 1993) if the 
spatial correlation decreases with the distance. The most important drawback is that there is no unbiased estimate 
of the variance. The standard variance formulas will generally yield an overestimation, so that the improvement 
can be hidden by the variance estimation bias. The traceability of the sampling process is probably the main gain in 
systematic sampling. Figure 17(c) shows an example from Castilla y León (Spain), where a regular grid of 30-km 
steps is used to select a sample of communes.  

Sampling with a probability proportional to the geographical area is not the best option for agricultural statistics. A 
more reasonable solution is sampling with probability proportional to the cropland area in each EA. Other criteria 
may be based on the utilized agricultural area, current annual crops or other categories. This can be achieved by 
photointerpreting a sample of points, if cropland can be identified on the images. It may provide an alternative if no 
recent data are available for the total cropland per EA that can be used for PPS sampling. Photointerpreting a sample 
of points and selecting the EA if the point falls on cropland (figure 18) automatically produces a PPS EA sampling, 
even if the cropland area in each EA and in the whole region are unknown. The problem with this approach is that 
the computation of estimators for the total of any additive variable Z requires knowledge of the cropland in each 
EA and in the region: 
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where A and ai refer to the cropland area in the region and in the ith EA respectively. To cope with 
this problem, one option is photointerpreting a larger sample that will be considered as a first-
phase sample, or using a proxy, such as classified images or land cover maps. If a suitable land 
cover map or classified image is available, the parameter driving the PPS sampling may be the 
cropland area (or a similar concept) according to the map.  
 

  
Figure 43. A point that is photointerpreted as cropland (left) and a point that is photointerpreted as non-cropland (right). 

 
Figure 19 maps the arable land area according to the CLC (EEA, 2007), and is available for the 
EU and some neighbouring countries. In Castilla y León, arable land is concentrated in the central 
zones, and therefore the sample of EAs with a probability proportional to arable land is mainly 
located in the centre of the region (figure 19). In this case, there are two sampling steps: first, 
defining a systematic grid; and second, selecting the EAs corresponding to the points of the grid 
that fall on arable land according to the CLC.    
 

where A and ai refer to the cropland area in the region and in the ith EA respectively. To cope with this problem, one 
option is photointerpreting a larger sample that will be considered as a first-phase sample, or using a proxy, such 
as classified images or land cover maps. If a suitable land cover map or classified image is available, the parameter 
driving the PPS sampling may be the cropland area (or a similar concept) according to the map.

(a) Random (b) One-dimensional systematic 
with zig-zag array.

(c) Bidimensional systematic
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Figure 18. �A point that is photointerpreted as cropland (left) and a point that 
is photointerpreted as non-cropland (right).  

Figure 19 maps the arable land area according to the CLC (EEA, 2007), and is available for the EU and some 
neighbouring countries. In Castilla y León, arable land is concentrated in the central zones, and therefore the sample 
of EAs with a probability proportional to arable land is mainly located in the centre of the region (figure 19). In this 
case, there are two sampling steps: first, defining a systematic grid; and second, selecting the EAs corresponding 
to the points of the grid that fall on arable land according to the CLC. 

Figure 19. �Arable land distribution and a systematic sample of communes with 
a probability proportional to the area of arable land.   
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3.3.5. 	EA stratification 
Traditionally, EAs are stratified on the basis of data from a census or other information sources, such as total cropland 
or number of cattle units from administrative reports provided by local extension workers. If such information is 
unavailable, too old or considered unreliable, remote sensing can provide an alternative. The approaches mentioned 
in section 2 above may be applied to stratify EAs if a GIS layer of their boundaries is available. In this case, it is 
possible to stratify by direct photointerpretation or by computation of indicators from available GIS layers: land 
cover maps detailed image classifications or farm registers.

A two-stage sampling scheme can be also considered, with EAs as PSUs and points as SSUs. In the second stage, 
we can use a two-phase sampling scheme with a regular grid of points in the first phase (figure 20). These points 
would be photointerpreted as cropland, non-cropland or doubt, for a simple stratification that would lead to the final 
sample of points. The identification of farms or holdings operating the plots that correspond to the selected field 
would produce a sample with a probability proportional to the cropland area (Gallego et al., 1994). This scheme 
illustrates how fuzzy the discrimination between list frames and area frames can be: the starting point are EAs, a 
typical element of list frames; then, a sample of points is introduced, a typical element of area frames; last, from 
the points, a sample of holdings is obtained, the basic unit of list frames. Figure 20 illustrates a strongly unbalanced 
grid (the long distance being in a west–east direction and the short distance in a north–south direction) to emphasize 
that grids need not necessarily be square and that this may have the advantage of reducing the walking distance 
between points in the field survey.  

Figure 20. �A grid of points in an EA, which can be used as the first-phase sample 
in a second sampling stage.  
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3.4. Measuring plots

Measuring agricultural plots is usually a necessary task in agricultural surveys, both in list frames and in area frames. 
Indeed, in most developing countries the information provided by farmers on the area of a specific plot tends to 
be unreliable, often due to lack of knowledge. Photointerpretation may be a valid alternative to the traditional 
measuring-tape-and-compass method. Depending on the characteristics of the images or plot boundaries, it can be 
more or less precise than GPS-based measurement. In principle, when photointerpreting, the delineation accuracy 
is approximately of the same order of magnitude of the resolution of the image, if the contrast between objects is 
sufficient. Thus, measuring plots on images with a resolution lower than 3–4 m should be preferable to measuring 
with a basic GPS device having a location accuracy of approximately 5 m. However, the issue is much more 
complex. 

Figure 20 represents an example of an area dominated by agricultural plots smaller than 1 ha.  The image on the left 
is an aerial orthophotograph (having a resolution of 0.5 m) dated 2007, while that on the right is a SPOT satellite 
image (with a 2.5 m resolution) dated 2012. The plot marked as “1” can be approximately delineated on both 
images, because the contrast with neighbouring plots is good. However, the difference in the shapes identified is 
rather significant, only partly because of the different dates. Plot 2 is easy to delineate in the orthophotograph, but is 
virtually impossible to identify on the image on the right. Photointerpretation should be performed on the field with a 
portable device, to identify possible changes intervening between the date when the image was captured and the date 
of the survey. When selecting the harware, care should be taken to ensure that the screen enables a good visibility.  

Figure 21. �Photointerpreting plots with an aerial orthophotograph (0.5 m 
resolution) and a satellite image (2.5 m resolution).  
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3.5. Sampling satellite images

3.5.1. 	The experiences of the 1970s
In the LACIE project, the first to explore the application of remote sensing to agricultural statistics, Landsat-MSS 
images were cut into tiles of 5 x 6 nautical miles (Mc Donald and Hall, 1980), and a sample of these was classified. 
The reason for this selection was not clearly given in the publications explaining the project, although it seems that 
the classification of a full Landsat-MSS scene required computing facilities that the USDA/NASS did not have 
in-house (Hanuschak, personal communication, 2001). Although NASA had the capacity to classify a full MSS 
image, it was decided to design a method that the NASS could use without external support. Sampling errors were 
computed; however, the impact of estimating by pixels counting the crop areas in each tile was disregarded. This was 
corrected in the late 1970s, when the USDA gained the capability to classify full images and started to use regression 
estimators combining field data of the June Enumerative Survey (approximately 16 000 segments with physical 
boundaries) with classified images as auxiliary data (Hanuschak et al., 1979; Chhikara et al., 1986; Allen, 1990).   

3.5.2. 	Sampling medium-resolution images 
In the 1980s, cutting an image into tiles and sampling them for automatic classification became meaningless; 
however, sampling satellite images continued to be justified in certain cases. Such images have a spatial resolution 
between 20 m and 60 m, and were called “high-resolution images” at the time. Sampling satellite images was 
reasonable when the region of interest was large and a full coverage of images was not affordable for a specific 
project (the free-distribution policy was not applied to this type of images). For example, the “Rapid crop area 
change estimates” of the EU MARS Project used a sample of 60 sites, of 40 x 40 km each. The target was to 
cover each site with four SPOT-XS images throughout  the crop growth season, although the maximum number of 
images was not always reached. For several years, the project gave estimates that matched other available sources 
of information; however, further analysis concluded that the use of pixel counting as a basis for the estimates gave 
image analysts a subjectivity margin of approximately 20–30 percent, so that the estimates could be adjusted to 
match external sources (Gallego, 2006). 

Satellite images have often been sampled for forest resource assessment at global scale or for very large areas, such 
as the tropical belt (figure 21). For forest applications, it may happen that an image is subdivided into tiles and only 
one of these, or a sample thereof, is analysed when images are visually photointerpreted. In this case, the cost of 
each sample unit is proportional to its size; this justifies the choice of smaller units (Achard et al., 2002). 
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Figure 22. �Stratified sample of Landsat scenes and quarters of scene used to
estimate changes in tropical forest. 

3.5.3.  sampling vhR images
VHR images (currently, having a pixel size between 0.3 m and 3m) have become increasingly frequent and the 
question of their usability for area estimation has arisen. Full coverage is extremely expensive and complicated 
to manage. Therefore, a sample of units with a suitable size to be covered by VHR images may be created. The 
size covered by a VHR image varies from one satellite to another. Squares of 10 x 10 km or 15 x 15 km may be 
considered suitable for coverage by a VHR image (figure 22). The EU’s Geoland2 project has explored the use of 
such samples to estimate land cover change (Aleksandrowicz et al., 2014).

The sampling efficiency of 10 x 10 km units has been explored under the optimistic assumption that single crops 
can be accurately identified (Gallego and Stibig, 2013). The conclusion was that VHR crop identification with this 
type of samples can be cost-efficient compared with EU-LUCAS ground-based point surveys if the cost per 10 x 10 
km unit, including image purchase and processing, is less than approximately US$500. The cost threshold depends 
on the spatial correlation structure and therefore varies from one crop to another in each landscape. Currently, this 
cost is not achievable. However, the system may become interesting in the future, for crops that can be reliably 
identified on images, if the cost of image purchasing and processing is substantially reduced.
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Figure 23. �A sample of sites of 10 x 10 km to be analysed with VHR images in the 
Geoland 2 project.   

3.6. Surveys along roads

Many area frame surveys have faced difficulties with sample units that are far from roads and require a long walking 
time to be reached. This is particularly serious in countries in which the road network is not dense or when time 
constraints are particularly strict. Surveys along roads are used by several international agencies in assessing the 
agricultural situation in third countries. However, in most cases, there does not appear to be any methodological 
note describing how to sample the routes along which the observations are made. 

Concentrating observations along roads appears to be a practical solution, and several options can be considered: 
Moisen (1996) proposes a stratification based on buffers around roads. This seems to be practical for his model-based 
approach to the monitoring of vegetation; however, it is likely to be inefficient for crop area estimates, because most 
of the variance would derive from the areas far from the roads, with a lower sampling rate. 

The CropWatch system uses a system that assumes the availability of reliable figures for the total area of a more 
general class, such as arable land or overall cropland (Wu and Li, 2012). The more general figure can be obtained, 
for example, with a small regression model extrapolating FAOSTAT figures, or through remote sensing, such as 
by photointerpreting a large sample of points into cropland and non-cropland. The survey along the road is used to 
estimate the proportion of each single crop compared to the overall cropland. The underlying assumption is that the 
ratio between the areas of different crops is similar close to the roads and far from the roads. This assumption has 
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been tested in the EU with the help of a GIS road network and the LUCAS 2009 field survey. Sampling pieces of 
road with a probability proportional to their length and sampling points in a 100-m buffer leads to a positive bias 
for wheat (+ 2.5 percent) and a negative bias for barley (-4.3 percent). The bias is reduced by half with a modified 
sampling scheme: large square segments of 3 x 3 km are sampled, a regular grid is selected therein, and only the 
points within a 100-m buffer from any road in the square segment are visited (figure 23). With this sampling scheme, 
the bias is reduced to +1.4 percent for wheat and to -2.4 percent for barley. The reason is that part of the bias comes 
from the fact that barley is more often cultivated in areas with less fertile land, and these areas also have a less dense 
road network; this receives a higher weight when sampling segments rather than sampling road arcs. 

Figure 24. �Sample of points for a survey along the road by sampling large 
square segments.    
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Chapter 4

Detailed crop mapping using remote 
sensing data (Crop Data Layers)
Andrew M. Davidson, Thierry Fisette, Heather McNairn and Bahram Daneshfar

4.1. Introduction

Understanding the state and trends in agricultural production at a national scale is essential to combat short- and 
long-term threats to the stable and reliable access to food for all. However, quantifying food supply can be difficult 
because national, regional and global crop production fluctuates due to local land management decisions and ever-
changing meteorological conditions (Fischer et al., 2005). Forecasting food supply (production) necessitates ongoing 
and frequent updates on the crop acres seeded and their yields (Lobell and Field, 2007; World Bank, UN & FAO, 
2010; Waldner et al., 2015). Obtaining this information requires detailed, routine and rapid mapping of croplands 
with sufficiently high accuracy (Gallego et al., 2008).

Remotely sensed data from Earth Observation (EO) satellites are the most cost-effective means for gathering spatially 
explicit, timely, detailed and reliable information over large land areas with high revisit frequency (Atzberger et al., 
2016). Such information, integrated with national statistics, in situ (ground) observations and secondary (ancillary) 
data and information, show potential for mapping crop acreages (Gallego, 2004; Kussul et al., 2016). However, 
delivering an accurate inventory of crops requires the selection of appropriate satellite data, the collection of quality 
ground information, the application of suitable pre- and post-processing methods and the implementation of robust 
methodologies. This is a challenge because cropping systems are often diverse and complex, and the types of crops 
grown and the timing of their growth vary from region to region, as do the management practices implemented. 
Consequently, the success of remote sensing approaches requires their adaptation to local cropping systems and 
environmental conditions. 

The last decade has seen many attempts to articulate the spatially explicit remote sensing data requirements to 
map cropping systems, and particularly, where (Fritz et al., 2015), when (Whitcraft et al., 2015a), how frequently 

4
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(Whitcraft et al., 2015b), over which spectral range, and at what spatial resolution data are needed (Whitcraft et al., 
2015c). Elucidating the best data and methodologies for crop mapping remains a high priority commitment on the 
international research agenda. Indeed, various international efforts have been established to reach a convergence of 
approaches and develop monitoring and reporting protocols and best practices for a variety of global agricultural 
systems (such as the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) initiative, which 
includes the Joint Experiment of Crop Assessment and Monitoring (JECAM), the Asian Rice Crop Estimation 
and Monitoring initiative (Asia-RiCE), the Stimulating Innovation for Global Monitoring of Agriculture activity 
(SIGMA), and contributions from the Sentinel-2 for Agriculture system (Sen2-Agri)). 

The overarching goal of this chapter is to provide an overview of remote-sensing-based approaches for detailed 
(field-level) annual crop mapping at a national scale. First, an overview of existing remote-sensing-based approaches 
used for cropland mapping is presented. This includes a brief overview of supervised image classification and pixel-
based versus object-based classification. Second, the various types of satellite data, ground data and secondary data 
used for detailed crop mapping are discussed. Third, the operational implementation of a national crop mapping 
program is demonstrated with specific reference to the Annual Crop Inventory for Canada. Finally, the main future 
challenges and opportunities for crop type mapping at national scales are outlined.

4.2. Satellite image classification for detailed crop mapping

4.2.1. 	The supervised classification of satellite imagery
Satellite image classification is a fundamental tool for many remote sensing applications. In the broadest sense, it 
involves the implementation of automated techniques that can identify different surface types in one or more spectral 
bands to produce a thematic map with little or no user interaction  (Jones and Vaughan, 2010). During this process, 
image data (pixels or objects, see section 2.2) are sorted automatically into one of a finite number of target classes 
on the basis of their spectral characteristics. 

In most cases, crop maps are generated using supervised classification (Beltran and Belmonte, 2001; Congalton et 
al., 1998). The supervised classification approach requires significant a priori human intervention, and is generally 
implemented in four main steps: (i) an image analyst uses in situ (ground) observations to identify locations in the 
image data that correspond to each of the surface types (target classes) to be mapped (this reference data set is often 
referred to as a training sample, because it is used in subsequent steps to “train” the computer to recognize spectrally 
similar areas for each class); (ii) the classification algorithm matches these reference locations to the image data (and 
secondary data, if available) to statistically define the spectral (and non-spectral, if secondary data are available) 
characteristics of each target class; (iii) the algorithm then compares each pixel in the image to these signatures 
and assigns it to the target class which it most closely resembles; and (iv) the accuracy of the final classification 
is evaluated (validated) using a selection of ground reference points not used to train the classification (that is, the 
validation sample). The entire supervised classification process for detailed crop mapping is summarized in detail 
in figure 1.

Until recently, the Maximum Likelihood (ML) classification method was the most widely used method for the 
supervised classification of remote sensor data (Lu and Weng, 2007; Bhatta, 2008; Kumar et al., 2016). In this 
approach, training data are used to describe target classes statistically by their multivariate probability density 
functions. Each density function represents the probability that the spectral pattern of a class falls within a given 
region in multidimensional spectral space (Denègre, 2013). Image data are then assigned to the training class of 
which it has the highest likelihood of being a member (Jensen, 1986). The ML approach has been widely applied 
in different studies for the satellite image classification of agricultural regions (Laba et al., 1997; Xiuwan, 2002; 
Abdulaziz et al., 2009; Kamusoko and Aniya, 2009; Rogan et al., 2008). However, limitations associated with this 
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approach – particularly, its reliance on the Gaussian distribution of input data, an assumption that is often violated 
when using multi-temporal image data (Gislason et al., 2006; Glanz et al., 2014) – mean that the development of 
alternative classification techniques continues to be an active area of research in agricultural remote sensing. Of these 
new methods, artificial neural networks (ANNs – see Rumelhart et al., 1986; Rigol-Sanchez et al., 2003), support 
vector machines (SVMs – see Abedi et al., 2013; Al-Anazi and Gates, 2010; Cortes and Vapnik, 1995; Ghimire 
et al., 2012; Zuo and Carranza, 2011), Decision Trees (DTs – see Breiman, 1984) and ensembles of classification 
trees such as Random Forest (RF – see Breiman, 2001; Vincenzi et al., 2011; Waske and Braun, 2009; Ghimire et 
al., 2012; Rodriguez-Galiano and Chica-Olmo, 2012)  have all shown great promise. 

Figure 1. �The steps in a supervised classification. The Agriculture and Agri-
Food Canada (AAFC) approach to crop mapping at the field (parcel) 
level follows the red arrows. 
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4.2.2. 	Pixel-based versus object-based classification
The supervised classification of satellite imagery has traditionally been implemented on a pixel-by-pixel basis. 
However, the spatial variability of each input layer or band is much less within the field of a single crop than between 
fields of different crops. As a result, more recent attempts to improve pixel-based crop mapping accuracies have 
focused on the development of methods that focus on the classification of homogeneous aggregations of pixels, 
known as objects. The most common approach used to generate image objects is image segmentation (Benz et al., 
2004). Image segmentation involves the decomposition of an image into homogeneous non-overlapping regions 
through the grouping of pixels in accordance with determined criteria of homogeneity and heterogeneity to produce 
objects that are spatially and spectrally heterogeneous (Haralick and Shapiro, 1985; Comaniciu and Meer, 2002; 
Benz et al., 2004). Feature extraction involves the subsequent extraction of the various spectral, textual, morphic 
and contextual attributes associated with each of the objects created in the segmentation process (Blaschke, 2010). 
Classifications can then be performed on image objects, using the object-specific feature information as an additional 
input to the classifier. This is referred to as object-oriented classification (Jensen, 1986). Successful applications 
of this approach for crop identification and mapping have been demonstrated by Evans et al. (2002), Brown de 
Coulston et al. (2003), Castillejo-González et al. (2009), McNairn et al. (2009), Peña-Barragán et al. (2011) and 
Vieira et al. (2012).

4.3. Input data layers required for crop classification

Irrespective of the exact method(s) used, the supervised classification of crop types involves the use of multiple 
types of data during the classification process. These are: (i) in situ (ground) data; (ii) satellite data; and (iii) ancillary 
(secondary) data and information (Teleguntla et al., 2016). When these data are of high quality and are used in 
an integrated fashion, the output mapping produces the highest possible accuracies (Thenkabail et al., 2009a and 
2009b). In this section, we outline the main considerations when collecting high quality in situ, satellite and ancillary 
data for agricultural classification.

4.3.1. 	Ground (in situ) data
The quality of in situ (ground) observations is of great importance to cropland mapping because these data are used 
not only to train the supervised image classifications from which crop maps are derived, but also because they are 
used as independent reference data to validate these maps. The quality of ground data has a significant impact on 
the delivery of an accurate classification; therefore, practitioners must pay careful attention to how these data are 
collected. Traditionally, ground data used in crop classification have been collected via crop field surveys. In this 
approach, users visit fields and record information about the crop grown – such as crop type, cultivar, growth stage, 
etc. – along with the geographic location of the observation with a Global Positioning System (GPS). The objective 
of surveying is to sample the diversity of crop types within the region of interest as representatively as possible. 
Doing so requires that a sufficient number of samples be collected for each target class. 

The temporal and spatial characteristics of the sampling designs used to collect in situ observations influence the 
quality of satellite-derived crop maps. The timing of field surveys is usually determined by the local crop calendar. 
Crop calendars describe when the major growing phases of particular crops occur each year (see figure 2). For best 
results, site visits should coincide with the period in crop growth during which the crop type can most easily be 
identified. Typically, this will occur during the periods of flowering, fruit development and reproduction. For regions 
with a simple single cropping season, one observation per field per season is usually adequate. If multiple crops are 
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grown on the same field over the course of a year (at the same time or separately), one visit to the site per crop cycle 
is required. While the most appropriate ways to locate representative, non-biased and spatially independent field 
samples are well documented, these approaches can rarely be implemented operationally. Instead, sampling is often 
provided by “windshield surveys”, in which data are collected along road networks from motorized vehicles. While 
this approach allows a data collector to easily and rapidly capture the entire crop diversity from all visible fields, the 
spatial non-randomness of collected data can introduce statistical bias that must be evaluated carefully before use.

Figure 2. Crop calendars for (a) wheat and (b) rice. 

The dates of planting and harvesting determine the sampling period over which remote sensing and ground observations must be 
acquired for space-based crop mapping (AMIS, 2012).

It is often difficult to determine a priori the sample size necessary to train the image classifier. Although overall 
classification accuracies generally increase with the number of fields used in the training process, the exact nature 
of this relationship is complex and differs among crop classes. The number and quality of the images acquired as 
input to the classification also influence the number of fields to be sampled. For example, larger sample sizes are 
required if the variability in spectral response within each crop class is not sufficiently characterized to permit crop 
discrimination. However, because such factors cannot generally be predicted a priori, ground sampling often results 
in undersampling for some crop types and oversampling for others.

The biggest disadvantage of field surveys is that they are labour-intensive, time-consuming and challenging when 
the goal is to acquire representative data at national and regional scales. Consequently, other reliable sources of data 
must usually be considered to supplement ground surveys (or replace them entirely). These sources include data 
collected by local, regional or national government agencies or, more informally, through crowdsourcing. Ground 
data provided by government agencies are usually the most accurate, detailed and complete sources of information 
available for crop type mapping, although they still require considerable evaluation to ensure their readiness for use 
in classification. Although future potential exists, crowdsourcing – the process of obtaining information by enlisting 
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the services of a large number of people, either paid or unpaid, via the Internet – has not yet become a widely used 
method for collecting ground data for crop classification purposes.

4.3.2. 	Earth Observation (EO) Data
4.3.2.1. EO data sources for successful crop classification
The coordination of Earth Observation (EO) data for agricultural monitoring necessitates the articulation of spatially 
explicit EO data requirements, including on where (Fritz et al., 2015), when (Whitcraft et al., 2015a), how frequently 
(Whitcraft et al., 2015b), over which spectral range, and at what spatial resolution these data are needed (Whitcraft 
et al., 2015c). Because cropping systems are often diverse and complex, and the types of crops grown and the timing 
of their growth vary from region to region, the best choice of sensors to be used, the optimal number of images 
required, and the timing of image acquisitions are usually geographically specific. 

The decision to use optical or synthetic aperture radar (SAR) is usually determined by the trade-off among a number 
of factors, including: (a) the heterogeneous and dynamic intrinsic nature of the agro-ecosystem being studied; (b) 
the geographical extent to be mapped; (c) the Minimum Mapping Unit (MMU) required to resolve individual fields 
and other meaningful ecological units (wetlands, woodlots, etc.); (d) differences in crop cycles; (e) differences in 
cropping practices and calendars within the same class; (f) the spectral similarity with other land cover classes; 
and (g) the engineering constraints of the remote sensing systems (swath size; spatial, temporal, spectral and 
radiometric resolutions; and cloud coverage for optical systems); and (g) data availability (whether open or fee-
based; Waldner et al., 2015). These sensor-focused considerations are summarized in table 1, which briefly illustrates 
the sensor characteristics required to create various crop-related map information products for the Group on Earth 
Observation’s (GEO) Global Agricultural Monitoring (GLAM) initiative (also known as GEOGLAM).



Handbook on remote sensing for agricultural statistics 97

Table 1. �The table of requirements for satellite-based Earth observations 
data, developed by the CEOS Ad Hoc Team for GEOGLAM (CEOS, 2014; 
GEOGLAM, 2014).

Requirements are broken down by spatial & spectral range, frequency with which reasonably cloud-free data are required, geographic 
extent, as well as the application or target product for which the data would be used. Requirements are refined based on field size over 
which acquisitions are required, or the field sizes for which a certain data type would be useful. “L” refers to “Large fields” (>15 ha), “M” 
refers to “Medium fields” (1.5–15 ha), and “S” refers to “small fields” (<1.5 ha). The symbol “x” or the word “All” indicates that these data 
are useful for that product’s generation for all field sizes (Whitcraft et al., 2015c).
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4.3.2.2. Optical satellite data
Optical remote sensors collect spectral observations in the visible, near-infrared (NIR) and short-wave infrared 
(SWIR) wavelengths to form images of the Earth’s surface by detecting the solar radiation reflected from targets on 
the ground. These sensors are well-suited for mapping vegetation because observations from their primary imaging 
bands (usually, blue, green, red, NIR and SWIR) can be used to readily distinguish the unique spectral signatures 
of vegetation from other surface covers. In the visible, NIR and SWIR regions of the electromagnetic spectrum, the 
amount of ambient solar energy absorbed, reflected and transmitted by vegetation is mainly determined by plant 
pigmentation, internal leaf structure and moisture content, respectively (Jensen, 1986). These physical and chemical 
responses (at the atom level) are crop-specific and indicative of the growth stage and condition of the plant. As 
a result, the shape and magnitude of reflectance spectra spanning these wavelengths is often used to differentiate 
among different vegetation types. However, using optical sensors for crop monitoring is not without challenge. 
Because these sensors are passive and depend on the Sun as the sole source of illumination, their images can only 
be collected during the daytime and under clear skies. In addition, factors other than the presence and amount 
of green vegetation (senescent vegetation, woody biomass, soil and shadow) often combine to form composite 
spectra, and this often makes the discrimination of green vegetation difficult (Colwell, 1974). This has prompted 
the development and application of spectral vegetation indices (VIs), which combine two or more spectral bands 
to enhance the vegetative signal, while minimizing background effects. 

At national to global scales, agricultural mapping has mostly been undertaken using cloud-free coarse resolution 
(greater than 100 m) observations from sensors such as SPOT-VGT (Bartholomé and Belward, 2005 – Global Land 
Cover 2000), NOAA-AVHRR (Loveland et al., 2000 – IGBP DISCover; Hansen et al., 2000 – UMD Global Land 
Cover; Defries et al., 2003 – Global AVHRR Land Cover; Defries and Townshend, 2003 – Global AVHRR NDVI 
Land Cover), NASA-MODIS (Friedl et al., 2002 - MODIS Global Land Cover; Tateishi et al., 2011 – Global Land 
Cover by National Mapping Organizations) and ENVISAT-MERIS (Arino et al., 2008 – GlobCover). While the 
large swath width of these systems provide the large synoptic views and daily revisit frequencies required for the 
phenology-based classification of vegetation, their use in detailed crop classification of smallholder agriculture is 
limited by their coarse resolution pixels, which are often unable to resolve individual fields (Wardlow et al., 2007; 
Wardlow and Egbert, 2008; Ozdogan, 2010). As a result, these efforts have tended to map agriculture using one or 
two very broad classes that are insufficient for detailed crop area estimation, or provide additional phenologically 
related information to supplement studies using finer-resolution observations. Nonetheless, exceptions occur in 
agricultural regions with large fields, or where techniques for unmixing the contributing surface components of 
mixed pixel spectra can be implemented (Jakubauskas et al., 2002; Lunetta et al., 2006; Chang et al., 2007; Fritz 
et al., 2008; Galford et al., 2008; Lunetta et al., 2010; Sakamoto et al., 2010; Pan et al., 2012; Brown et al., 2013; 
Waldner et al., 2016).

At regional to national scales, agricultural mapping has mostly been undertaken using multispectral observations 
from moderate-resolution (10 m to 100 m) sensors, particularly Landsat, whose data are available free of charge 
(Badhwar, 1984; Reese et al., 2002; Guerschman et al., 2003; Turker and Arikan, 2005; McNairn et al., 2009; 
Fisette et al., 2013; Johnson, 2013; Fisette et al., 2014; Yan and Roy, 2014; Fisette et al., 2015). However, while 
the spatial resolution of these sensors is sufficient to resolve individual fields, their temporal revisit times are much 
less frequent than the daily overpasses of the NOAA-AVHRR, SPOT-VGT and NASA-MODIS orbiters (Landsat-7 
and Landsat-8 missions offer an eight-day revisit time, with each individual satellite revisiting every 16 days). 
Such large gaps between revisit times are problematic in regions with persistent cloud cover, where the number of 
cloud-free images necessary for detailed crop mapping is rarely obtained (Jewell, 1989; McNairn et al., 2002; Blaes 
et al., 2005; McNairn et al., 2009). In such cases, data from other moderate-resolution multispectral sensors are 
available to fill the data gaps, though these may be fee-based (such as SPOT, AWIFS and DMC), operate at coarser 
spatial resolutions (such as AWIFS, the resolution of which is 56 m), contain fewer spectral imaging bands (SPOT, 
DMC), or be subject to other technical or access constraints. In the future, synergies between operational programs 
such as Landsat and Sentinel-2 (Wulder et al., 2015) will contribute greatly to filling these data gaps by raising 
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the frequency of geometrically and radiometrically compatible acquisitions (Gómez et al., 2016), and providing 
global observations with a two- to five-day frequency (Drusch et al., 2012; Irons et al., 2012; Wulder et al., 2015). 

At local scales, agricultural mapping has mostly been undertaken using observations from fine-resolution (lesser 
than 10 m) sensors, such as RapidEye (Tapsall et al., 2010; Conrad et al., 2011; Kim and Yeom, 2014; Ustuner et al., 
2014; Beyer et al., 2015; Schuster et al., 2015; Lussem et al., 2016; Xu et al., 2016), and to a lesser degree, IKONOS 
(Xie et al., 2007; Turker and Ozdarici, 2011), Quickbird (Yang et al., 2007) and WorldView (Alabi et al., 2016). 
While fine-resolution remote sensing has been shown to increase field-level crop mapping accuracies in regions 
with small field sizes (Salehi et al., 2013), they have generally not been used operationally for comprehensive 
wall-to-wall national-scale agricultural mapping over large regions or countries (mostly due to their cost and the 
computational overhead of processing such large data volumes). Instead, their suitability for characterizing subfield 
variability in growth conditions has seen these data targeted towards precision agriculture, and the management of 
farm inputs such as fertilizers, herbicides, seed and fuel (used during tillage, planting, spraying, etc.).

4.3.2.3. SAR Data
SAR remote sensors propagate energy at microwave frequencies and measure the intensity and phase of energy 
scattered following interaction with a target. These sensors provide their own source of energy and are thus able 
to operate both day and night. The lower-frequency microwaves used by SARs are unaffected by atmospheric 
conditions, meaning that data collection is successful even in the presence of cloud cover. Sensing in the microwave 
portion of the electromagnetic spectrum makes SARs well-suited for discriminating among vegetation types because 
the scattering at these longer wavelength is driven by crop-specific larger-scale structures (size, shape and orientation 
of leaves, stems and fruit) as well as by the volume of water in the vegetation canopy (at the molecule level). 
However, as in the case of optical data, using data from SARs for crop monitoring is not without challenge. This 
is primarily due to the confounding contributions of soil properties (moisture and roughness) to the radar signal. 
The significance of the effects of these soil conditions depends upon the crop type and growth stage, and the 
configuration of the microwave sensor. Nevertheless, results from research (Blaes et al., 2005; McNairn et al., 2009; 
Larrañaga et al., 2011) and operations (Fisette et al., 2015) have shown that the integration of SARs can increase 
accuracies over the use of optical data alone.

SAR sensors are defined by their operating frequency, incident angle and polarization. Frequency (GHz or 
wavelength (in cm)) determines the penetration depth of the microwave into the crop canopy, and which crop 
canopy components (leaves, fruit, stalks) interact with the signal, and how. No single frequency is best for separating 
all crops, because penetration into the canopy must be deep enough to allow the microwaves to interact with 
the dominant plant structure, but not so deep that soil properties affect the SAR response. This optimal depth of 
penetration, and matching of the wavelength to the size of crop structures, varies from crop to crop and throughout 
each crop’s development. As such, most researchers advocate the use of multiple frequencies for crop classification 
(Skriver et al., 1999; Hill et al., 2005; Baghdadi et al., 2009; McNairn et al., 2009; Shang et al., 2009; Hoekman et 
al., 2011; Haldar et al., 2012; Jia et al., 2012; Skriver, 2012). Currently, implementing a multi-frequency approach is 
challenging due to limitations in the availability, in operational terms, of data from sensors at different frequencies. 
Thus, approaches to date have generally been to integrate single-frequency SAR with optical data (see for example 
McNairn et al., 2009; Hütt et al., 2016). 

The optimal SAR polarizations for crop classification are easily defined. The linear cross-polarization (either 
horizontal-vertical – HV – or vertical-horizontal – VH) provides the best separation of crops (McNairn et al., 
2009; Koppe et al., 2013; Sonobe et al., 2014). The repolarization which must occur to produce a significant HV 
or VH response happens when the signal undergoes multiple scattering within the canopy. The vertical-vertical 
(VV) polarization is also useful in identifying crops as the vertical transmit waves are attenuated or scattered by the 
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vertical structure of many crops. Horizontal-horizontal (HH) is the least informative polarization. The incident angle 
also has an impact on penetration into the crop canopy; however, the selection of this angle is the least important 
consideration.

As with optical sensors, the selection of the SAR swath and resolution depends upon the region in question on the 
trade-off between the field size and the area to be mapped. The selection of the SAR orbit (ascending or descending) 
must also be considered. In temperate regions, humidity coupled with low overnight temperatures can cause dew 
to form on canopies. This early morning dew affects the backscatter (Gillespie et al., 1990). Some research has 
suggested that although backscatter increases in the presence of dew, the effect is observed across crop types and 
may have minimal effect on crop separability (Wood et al., 2002). Nevertheless, research on dew effects is limited; 
therefore, early-morning acquisitions should be avoided where possible. 

4.3.2.4. Optical and SAR data pre-processing
Optical and SAR data must usually be subject to various pre-processing routines before they can be used as input to 
classification algorithms for mapping agricultural landscapes. The exact natures of these routines – which are used 
to correct for radiometric and geometric distortions of data – depend on the specific sensors and platforms used 
to acquire the data, the atmospheric conditions during data acquisition and the methods used in the classification 
process. Radiometric distortions can result from variations in scene illumination and viewing geometry, atmospheric 
conditions, and sensor noise and response. Geometric distortions may result from the motion of the platform, the 
motion of scanning systems, variations in platform altitude, attitude and velocity, terrain relief and the Earth’s 
curvature and rotation. Corrections are intended to compensate for these distortions so that the geometric and 
radiometric representations of the imagery will be as close as possible to the real world. However, in reality, the 
actual amount of image preprocessing required from users will depend on the processing level of data acquired. 
Higher-level data products – often made available by space agencies as analysis-ready data suitable for direct use in 
scientific publications – have more pre-processing done at source compared to lower-level products, which require 
more preprocessing to be completed by the end user.

4.3.3. 	Ancillary (secondary) data and information
Ancillary (secondary) data and information come from sources other than remote sensing, and can be used to 
improve classification accuracy. Ancillary data refers to additional context variables that can be integrated with 
remote sensing data at various stages during the image classification process. These variables may include, but are 
not limited to, elevation, slope, aspect, hydrology, geology, soils, transportation networks, political boundaries and 
vegetation maps (Jensen, 2016). Ancillary data can be incorporated before the image classification process (such 
as for a priori image stratification; see Jensen, 2016), during the image classification process (for example, as input 
into classification: Maselli et al., 1995; Huang and Jensen, 1997; Stow et al., 2003; Qiu and Jensen, 2004) or after 
the image classification process (for example, for post-classification sorting: see Rocha and Queluz, 2002). Ancillary 
information refers to additional expert knowledge that can be incorporated into the classification process. This may 
include evidence regarding the most plausible landscape configurations resulting from the classification process. 
For example, ancillary information, implemented through Bayesian networks (Jensen and Nielsen, 2007), has been 
shown to allow for the incorporation of expert knowledge into complex classification tasks and the characterization 
of phenomena through plausible reasoning inferences based on evidence (Atzberger et al., 2016). However, while 
useful, great care must be taken to minimize the introduction of new errors while incorporating ancillary data and 
information into a classification system. 
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4.4 Operational crop mapping at the national scale

4.4.1. 	Moving from the research to the operations domain
National operational agricultural monitoring systems should provide timely, standardized and interchangeable 
crop-related information with statistically valid precision and accuracy (Atzberger et al., 2016) and be based on 
robust, consistent and repeatable data and methodologies (Franklin and Wulder, 2002). The implementation of 
such systems, built on a foundation of research and development, requires confidence that the methods developed 
(and data used) at regional scales are robust enough to be geographically portable over much larger areas where 
access to data (EO or in situ) may not be as easy (Bontemps et al., 2012; Gong et al., 2013). However, the actual 
transition from the research domain to the operations domain is usually non-trivial. This is because the transition 
pathways from research to operations and applications are characterized by a variety of challenges and potential 
barriers. These include, but are not limited to: (a) the lack of scientific understanding; (b) difficulties associated with 
extending scientific understanding or technological capability to operational utility; and (c) limitations to observing 
technologies, to the understanding of how to use the observations effectively or to the computational power required 
to use the observations in operational models (National Research Council of the National Academies, 2003). It is 
also important to note that the research-operations relationship is not unidirectional. Operational systems must be 
dynamic, and require ongoing improvements based on changing needs, emerging research and ever-improving and 
changing satellite data streams and in situ data networks. Consequently, research must remain at the core of the 
operational system throughout and beyond implementation (GEOGLAM, 2015).

4.4.2. 	Agricultural monitoring systems
In the past 40 years, numerous initiatives have focused on the derivation of cropland from satellite imagery. These 
initiatives have been carried out using a vast diversity of mapping strategies at global, subcontinental and national 
scales (table 2; Waldner et al., 2015). While most of these initiatives lasted only a short period of time, some continue 
today in an operational context. 

The primary global monitoring systems include: (a) the USAID Famine Early Warning System (FEWS-NET); (b) 
the Food and Agriculture Organization of the United Nations (FAO) Global Information and Early Warning System 
(GIEWS); (c) the Monitoring Agriculture by Remote Sensing (MARS) Project of the European Commission, at the 
Joint Research Center (JRC); (d) the Crop Watch Program at the Institute of Remote Sensing Applications (IRSA) 
of the Chinese Academy of Sciences; and € the USDA Foreign Agricultural Service (FAS) Global Agriculture 
Monitoring (GLAM) System (Becker-Reshef et al., 2010). Despite the utility of these initiatives for global 
agricultural monitoring, they are generally limited by their relatively coarse sampling resolutions (often greater 
than 10km), lack of detail within crop classes, lack of validation and large uncertainties (Vancutsem et al., 2012; 
Waldner et al., 2015) that make them unsuitable for detailed national crop mapping at the parcel level. 
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At the subcontinental or national scale, the use of much finer-resolution imagery (that is, 30 m or finer) has allowed 
for more detailed and more accurate crop mapping to be implemented at the parcel (field) level. Examples of such 
activities include: 
a.	 the United States Cropland Data Layer (CDL), generated annually by the United States Department of Agriculture 

(USDA) National Agricultural Statistics Service (NASS) (using UK-DMC 2 and Landsat-8 optical imagery); 
b.	 the United Kingdom Land Cover Plus: Crops (LC+ Crops) data set, generated annually by the United Kingdom’s 

Centre for Ecology & Hydrology (CEH) in collaboration with Remote Sensing Applications Consultants Ltd 
(RSAC) (using Sentinel-2 optical imagery and Sentinel-1 C-band SAR); 

c.	 the Chinese Agriculture Remote Sensing Monitoring System (CHARMS) and the China Crop Watch System 
(CCWS), with products generated submonthly by the Ministry of Agriculture (MOA) and the Chinese Academy 
of Sciences (CAS) (using medium- (lesser than 30 m; for example, HJ-1 CCD, GF-1, Landsat-5,-7 and -8, SPOT, 
IRS, Envisat) and low-resolution imagery (from 250 m to 1000 m; such as MODIS, AVHRR)); 

d.	 the Pakistan Agricultural information System (AIS), with products generated seasonally by the Pakistan National 
Space Agency (SUPARCO) and the Ministry of Food and Agriculture (MINFA), in collaboration with FAO 
(using SPOT-5 optical imagery); 

e.	 the Indian Crop Acreage and Production Estimation (CAPE) program, with land use mapped annually by the 
Indian Ministry of Agriculture (using RESOURCESAT-1 and -2 optical imagery and RISAT-1 and -2 SAR data);

f.	 the Russian VEGA-PRO satellite-based service for vegetation monitoring, generated sub-annually by the Russian 
Academy of Sciences, with support from the Skolkovo Foundation;

g.	 the Sentinel-2 for Agriculture system (Sen2-Agri), with products generated frequently during the growing season 
by the European Space Agency (ESA) (using Sentinel-2 optical imagery). 
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Table 2. �A survey of national, regional and global land cover maps (based 
on Waldner et al., 2015).The table only contains publicly-available data. 
Data sets having a distribution policy that prevents their use or 
access are not considered.

Extent Product Name and Reference Time Period

Global

FROM-GLC (Gong et al., 2013) 2013

Global Cropland Extent (Pittman et al., 2010) 2000–2008

GlobCover 2009 (Arino et al., 2008) 2009

Climate Change Initiative Land Cover (CCI) (Defourny et al., 201X) 2000, 2005, 2010

MODIS Land Cover Type MOD12Q1, 2005 (NASA) 2005

GLC-Share, Food and Agriculture Organization (Latham et al.) 1990–2014

IIASA-IFPRI Cropland (Fritz et al., 2015) 1990–2012

GLC2000 (Bartholomé and Belward, 2005) 1999–2000

International Geosphere-Biosphere Programme (IGBP) 
(Eidenshink and Faundeen, 1994)

1992–1993

Global Map-Global Land Cover (GLCNMO) (Tateishi et al., 2011) 2007–2009

Regional

Corine Land Cover, European Environment Agency (EEA) 2006

Southern African Development Community Land Cover database, 
Council for Scientific and Industrial Research (CSIR)

2002

Cropland Mask of Africa, Joint Research Centre (JRC) (Vancutsem 
et al., 2012)

2012

North American Environmental Atlas, Commission for 
Environmental Cooperation (CEC)

2005

Land Cover Map of Latin America and the Caribbean (Blanco et al., 2013) 2008

Congo Basin Map (Verhegghen et al., 2012) 2000–2007

Congo, Burundi, Egypt, 
Eritrea, Kenya, Rwanda, 
Somalia, Sudan, United 
Republic of Tanzania, 
Uganda

Africover, Food and Agriculture Organization (FAO) 1999–2001

Senegal, Bhutan, Nepal Global Land Cover Network (GLCN) 2005–2007

France, Belgium, the 
Netherlands

Land Parcel Identification System 2012–2014

Barbados, Rep. 
Dominicana, Dominica, 
Grenada, Puerto Rico, 
Saint Kit and Nevis, Virgin 
Islands

United States Geological Survey (USGS) 2000–2001

Fiji, Solomon Islands, 
Timor Leste, Niue, 
Naurau, Palau, Tonga, 
Tuvalu, Vanuatu, Kiribati, 
Marshall Islands, 
Micronesia, Cook Islands

Applied Geoscience and Technology Division (SOPAC) 1999–2010

Botswana, Namibia, 
Rwanda, Zambia, United 
Republic of Tanzania, 
Malawi

Land Cover Scheme II, the Regional Visualization and Monitoring 
System (ICIMOD-SERVIR)

2010
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Extent Product Name and Reference Time Period

National

China GlobeLand30 (Chen et al., 2015) 2009–2010

Japan
High Resolution Land Use-Land Cover Map, Japan Aerospace 
Exploration Agency (JAXA) (Takahashi et al., 2013)

2006–2011

Tajikistan (Thenkabail and Wu, 2012) 2010

Burkina Faso Corine Database of Burkina Faso 2000

Canada
Annual Crop Inventory, Agri-Food Canada (AAFC) (Fisette et al., 
2013, 2014, 2015)

2011-present

Canada National Resources of Canada (Latifovic et al., 2004) 2005

USA
Cropland Data Layer, US Department of Agriculture (USDA) 
(USDA National Agricultural Statistics Service Cropland Data 
Layer. 2015).

2008-present

China National Land Cover Map of China (Liu et al., 2005) 1995–1996

Australia Digital Land Cover Database (Lymburner et al., 2011) 2011

Cambodia
Land Cover of Cambodia, Japan International Cooperation 
Agency (JICA)

2002

New Zealand Land Cover DataBase v4 Ministry for the Environment 2004

South Africa National Land Cover, CSIR 2000–2001

South Africa
National Land Cover, South African National Biodiversity Institute 
(SANBI)

2009

Uruguay Land Cover of Uruguay, FAO 2010

Mexico
Land Cover of Mexico,Comisión Nacional para el Conocimiento y 
Uso de la Biodiversidad (CONABIO)

1999

Argentina
Cobertura y uso del suelo, Instituto Nacional de Tecnología 
Agropecuaria (INTA)

2006

Ecuador Uso del Suelo departamento de Informacíon Ambiental 2001

Thailand Royal Forest Department of Thailand 2000

Chile Chile Corporacion Nacional Forestal 1999

India
Land Use Land Cover of India, National Remote Sensing Centre 
(NRSC) (Sreenivas et al., 2015)

2012

Gambia (Holecz et al., 2013) 2013

United Kingdom
United Kingdom Land Cover Plus Crop Dataset (Natural 
Environment Research Council, 2015)

2015-present

Ukraine Land Cover Ukraine (Lavreniuk et al., 2015) 2010

Russia TerraNorte Arable Lands of Russia (Bartalev et al., 2011) 2014
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4.4.3. 	Case Study: Canada’s operational space-based Annual Crop Inventory
4.4.3.1. Adoption of EO by the Government of Canada 
Agriculture and Agri-Food Canada (AAFC) – the government department responsible for Canada’s agriculture and 
agrifood sector – has taken advantage of recent advances in satellite and sensor engineering and the proliferation of 
space-based EO missions to map and monitor agricultural land use and its change. This includes image data acquired 
by a multitude of satellites/sensors (such as Landsat-5, -7 and -8, RADARSAT-2, SPOT, DMC, RapidEye and 
Resourcesat-1) that span the optical and microwave regions of the electromagnetic spectrum and a range of spatial 
(pixel) resolutions (from 5 m to 56 m). There is already a significant body of published work by AAFC scientists 
that demonstrate the value of EO to provide useful national-extent, cost-effective, timely, accurate and scalable 
information on land use (McNairn et al., 2009; Shang et al., 2009; Deschamps et al., 2012; Fisette et al., 2013 and 
2014; Champagne et al., 2014; Jiao et al., 2014; Liu et al., 2016) and its changes in time (Pei et al., 2011; Li et al., 
2013; El-Khoury et al., 2014, 2015; Huffman et al., 2015). In the future, the AAFC’s ability to meet the sector’s 
informational needs is expected to improve as new satellite sensor technologies are launched, brought online and 
made available (such as Sentinel-1, -2 and -3; RADARSAT-Constellation). In this respect, the EO approach will 
be critical to the development of the AAFC’s next generation of useful and authoritative informational products.

4.4.3.2. The space-based Annual Crop Inventory for Canada
One of the most valuable EO-based information products produced operationally by AAFC is the Annual Crop 
Inventory for Canada (or ACI; see figure 3). This information product – which is updated annually and available 
free of charge to the public via the Government of Canada’s Open Data Portal – comprises a gridded (raster) map 
of the agricultural land use and non-agricultural land cover found within Canada’s agricultural extent (Fisette et 
al., 2013 and 2014). While the earliest versions of the ACI (2009 and 2010) focused on the mapping of Canada’s 
Prairie Provinces (Alberta, Saskatchewan and Manitoba), subsequent versions (2012 – present) have included the 
whole country. By providing highly accurate field-level information on detailed crop types, pasture and grassland, 
the ACI is an important foundational data set for supporting the development of programs and policy at the AAFC. 
Beyond the AAFC, the ACI provides important land use information for other departments of the Government of 
Canada, various provincial governments, producers, non-governmental organizations, universities and colleges, 
the private sector and the public.
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Figure 3. Map of the 2016 Annual Crop Inventory for Canada.

4.4.3.3. A Random Forest classification approach to land use and land cover mapping 
The ACI is created by the application of classification methodologies that were developed and customized in-house at 
the AAFC (McNairn et al., 2009; Shang et al., 2009; Deschamps et al., 2012; Fisette et al., 2013, 2014; Champagne 
et al., 2014; Jiao et al., 2014; Liu et al., 2016). Original versions of the ACI used a classification methodology based 
on the application of DTs. This was primarily due to its successful implementation in various land use classifications 
compared to other supervised classification approaches (see, for example, Friedl and Brodley, 1997; Brown de 
Colstoun et al., 2003; Pal and Mather, 2003; Xu et al., 2005; Peña-Barragán et al., 2011; Deschamps et al., 2012; 
Vieira et al., 2012; Liu et al., 2016), and especially, its operational application to the annual CDL of the United 
States of America (Boryan et al., 2011). More recently, the AAFC switched its focus to use Random Forest (RF) 
classification approaches. RF has performed particularly well in agricultural monitoring, and high classification 
accuracies have been obtained for cropland sites not only in Canada (McNairn et al., 2009; Deschamps et al., 2012; 
Fisette et al., 2013, 2014 and 2015) but also elsewhere in the world (such as in the United States of America (Xie et 
al., 2007; Watts et al., 2009; Zhong et al., 2014), Argentina (Valero et al., 2016; Waldner et al., 2016), Brazil (Müller 
et al., 2015; Waldner et al., 2016), Peru (Tatsumi et al., 2015), China (Valero et al., 2016; Waldner et al., 2016; Hütt 
et al., 2016), the Russian Federation (Valero et al., 2016; Waldner et al., 2016) and the Ukraine (Valero et al., 2016; 
Waldner et al., 2016), Japan (Sonobe et al., 2014), Iran (Eisavi et al., 2015), Australia (Pringle et al., 2012), France 
(Valero et al., 2016), Burkina Faso (Valero et al., 2016) and South Africa (Valero et al., 2016)).
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Since 2009, the AAFC has created its ACI by applying RF to various combinations of optical (Landsat-5, -7 and -8; 
Resourcesat-1; DMC; SPOT) and SAR (RADARSAT-2) imagery using discriminate functions estimated empirically 
from hundreds of thousands of ground-based (in situ) training data samples. The RF method is preferred because 
of its advantages over other methods and, with particular reference to AAFC operations, its demonstrated ability 
to handle discrete data, its processing speed (18 times faster than DT, according to Deschamps et al., 2012), its 
independence of the distribution of class signatures, its interpretable classification rules, its cost-effectiveness and 
demonstrated higher accuracies (Friedl and Brodley, 1997; Pal and Mather, 2003). The AAFC has also incorporated 
advanced options, such as pruning and boosting, into the DT classification process to improve the accuracy of the 
algorithm.

The AAFC performs its annual RF classifications on a region-by-region basis. This is because the dynamic nature 
of crop rotations, crop growth and harvest patterns create significant reflectance differences between adjacent 
satellite scenes within the temporal period encompassed by scene availability. While each classification region 
combines several dates of optical and SAR imagery, the actual combination of imagery per region can vary based 
on data availability. Region-by-region classification should be a consideration of any agency attempting to perform 
large-scale national mapping. 

4.4.3.4. Ground (in situ) data
In situ (ground) truth information used in model training and validation is critical to successful crop classification. 
Currently, annual crop insurance data provided by four Canadian Provinces (Alberta, Saskatchewan, Manitoba and 
Québec, which together represent 87 percent of the total agricultural extent) are the most accurate, detailed and 
complete sources of information for geospatial crop type information in Canada. For provinces where insurance data 
cannot be accessed, ground-truth information is provided by in situ observations from AAFC staff. In situ data are 
screened and evaluated for bias by the AAFC before they are input into the RF classifications. In situ observations 
present two major sources of bias. In crop insurance data, bias can occur because some crops are less likely to 
be insured than others. When this occurs, uninsured crops are not represented in crop insurance databases, and 
underrepresented in the training data input to the RF classifications. In the AAFC’s field surveys, bias can occur 
when the timing of field surveys does not coincide with the stages of crop growth that are most useful for accurately 
identifying crop types. When this happens, crop misidentification is more common, and systematic errors occur 
in the training data input to the RF classifications. Both cases of bias can result in land use maps containing lower 
classification accuracies. 

4.4.3.5. Optical and SAR satellite data requirements and their pre-processing
Research suggests that optical and SAR satellite data are both required to adequately characterize the key crop-
growing (phenological) stages required for high-accuracy crop mapping at a national scale across Canada (McNairn 
et al., 2009; Shang et al., 2009; Deschamps et al., 2012; Fisette et al., 2013, 2014; Champagne et al., 2014; Jiao 
et al., 2014; Liu et al., 2016). This is because both optical and SAR data streams provide unique and valuable 
information relating to plant growth and type. Optical imagery is important because observations acquired in the 
NIR and SWIR regions of the electromagnetic spectrum have been shown to be extremely useful for differentiating 
among crop types (Clark et al., 1995). Dual-polarization SAR data is much more sensitive to plant structure than 
optical data and is also able to fill gaps in the optical image record brought about by non-ideal weather conditions 
during key growth stages. Results from research (McNairn et al., 2009) and operations (Fisette et al., 2015) have 
shown that the integration of SAR can increase accuracies over the use of optical data alone. For example, the 
addition of the dual-polarization RADARSAT-2 data to optical imagery has increased overall accuracies by up to 
16 percent (Fisette et al., 2015).
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Before using optical and SAR data as input to the RF classification used to generate the ACI, some pre-processing 
of these data must be carried out. If not already geometrically corrected, images are orthorectified using a 3-D 
multisensor physical model (Toutin, 2005). Because the AAFC performs its RF classifications on a region-by-
region basis, the mosaicking and atmospheric correction of multidate optical data is unnecessary. However, because 
clouds may still be present in these data, an automated cloud and shadow masking technique (Zhu and Woodcock, 
2012) is applied to every optical image to remove poor-quality retrievals. A gamma maximum-a-posteriori filter is 
applied to radar data to remove noise (speckle) and the data are resampled to a 16-bit size to reduce processing time. 
Along-track images of the same date are mosaicked together. This process enables the creation of large classification 
regions with more training sites.

4.4.3.6. Evolution of optical and SAR imagery input
The ACI has evolved since its first release in 2009 in terms of the satellite data used as input to the classification 
process (figure 4). While the ACI has always incorporated SAR data from RADARSAT-2, the satellites and sensors 
used to provide optical data have changed throughout the years. These changes have been driven by a combination 
of push-and-pull factors. Push factors refer to the undesirable characteristics of a data stream that make its use so 
limiting that other sources must be sought. Conversely, pull factors refer to the desirable qualities of a new (or 
newly available) data stream that make its use preferable to existing streams. Push-and-pull factors usually include 
issues relating to data availability, data cost, spatial resolution, spectral resolution and temporal revisit frequency. 

In 2009 and 2010, the ACI was geographically restricted to the Canadian Prairie Provinces (Alberta, Saskatchewan 
and Manitoba) and based on the integration of multidate optical and SAR data from Resourcesat-1 and RADARSAT-2. 
The resulting crop maps, which were gridded to the 56-m spatial resolution of Resourcesat-1, provided acceptable 
mapping accuracies (greater than 75 percent) for the relatively large fields in western Canada. However, testing 
showed that the extrapolation of this approach to eastern Canada – where fields tend to be much smaller, longer 
and/or narrower – resulted in lower mapping accuracies in these regions. As a result, the Resourcesat-1 data stream 
was considered unsuitable for national-scale crop mapping in Canada. 

Figure 4. Data sources and volumes for AAFC Annual Crop Inventory, 2011–2015.

In 2011 and 2012, the geographical scope of the ACI was extended to encompass all but two Canadian Provinces 
(British Columbia, and Newfoundland and Labrador). Limitations brought about by the coarse spatial resolution 
of Resourcesat-1 data were directly addressed by using finer-resolution data from other optical satellite sensors. 
In 2011, these streams comprised multidate observations from Landsat-5 and single-date observations from the 
Disaster Monitoring Constellation (DMC), which were then integrated with RADARSAT-2 imagery. The resulting 
crop maps, which were gridded to a 30-m spatial resolution, provided high mapping accuracies not only for western 
Canada but also for the majority of the eastern part of the country (with the exceptions of the Provinces of Prince 
Edward Island (PEI) and Nova Scotia (NS), whose mapping accuracies fell below 70 percent). In 2012, after the 
mid-year failure of the Landsat-5 satellite, the EO input to the ACI was limited to multidate RADARSAT-2 imagery 
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and single-date observations from DMC. The significant reduction in optical data availability was partially offset 
by the doubling of RADARSAT-2 acquisitions over those of the previous year. The resulting crop maps, gridded to 
the same 30-m spatial resolution as in 2011, provided high mapping accuracies (over 75 percent) for all Provinces 
mapped, including those that were poorly mapped in 2011. The higher classification accuracies for PEI and NS in 
2012 were explained by the ability of SAR data to make up for missing optical data, and the use of a higher-quality 
in situ training data set in 2012. 

In 2013, the geographic scope of the ACI was extended even further, to include all Canadian agricultural Provinces. 
At the same time, data from the newly operational Landsat-8 became the sole optical data stream to provide input to 
the ACI. These data, integrated with SAR data from RADARSAT-2, were able to provide high mapping accuracies 
(over 75 percent) for all Provinces mapped. At the time of writing (2016), the Landsat-8/RADARSAT-2 imagery 
combination continues to provide a reliable and high-quality data source for the ACI, with mapping accuracies 
for 2016 expected to exceed 85 percent for all Provinces. The now stable source of EO information means that 
improvements seen in the ACI mapping accuracies since 2013 are largely due to non-imagery reasons, such as 
better and more reliable ground sampling, and tweaks to the RF classification methodologies that result in higher 
classification performance.

4.4.3.7. Classification postprocessing
The random forest classification used by the AAFC does not produce a land cover/use map that is immediately 
appropriate for universal distribution. Instead, three postprocessing steps – filtering, mosaicking and permanent 
class addition – must be undertaken before final product validation and accuracy assessment are conducted, and the 
data are made available (figure 1). First, post-classification filtering must be applied to the outputs generated by the 
random forest classification. This is because pixel-based classification approaches tend to render classified maps 
containing isolated and erroneously classified pixels. Misclassified pixels are often due to variations in crop growth 
within a single field and, left alone, will give the (usually wrong) impression that a farmer has planted multiple 
crops within a field. The application of post-classification filtering directly addresses this problem by assigning 
the majority class value within each field to each pixel in the field. This process has been shown to increase the 
classification accuracies of certain crop classes in the ACI by as much as 5 to 10 percent (McNairn et al., 2009; 
Fisette et al., 2014 and 2015). Second, the mosaicking of individual classification regions is undertaken to produce 
individual crop maps for each of the Canadian Provinces that contains agriculture. This is done using an automated 
process that prioritizes (chooses) zones with higher accuracies where there is overlap between classification regions. 
The third and final step in map preparation is the addition of permanent classes to the ACI. Every year, the AAFC 
updates a database containing “permanent” features – such as golf courses, sports fields, ski hills and airports – that 
generally remain unchanged from one year to another. The identification of these classes is important because they 
may otherwise be confused with spectrally-similar agricultural classes. Permanent features are added a posteriori 
to the filtered and mosaicked land use/cover classifications.

4.4.3.8. Product validation and accuracy
Once the ACI has been created, its accuracy is evaluated. To do this, the AAFC uses the confusion (error) matrix 
approach that has been adopted by the remote sensing community as the standard reporting convention of map 
accuracy (Congalton, 1991). Confusion matrices not only provide the overall accuracy of a classification technique, 
but also the errors of exclusion (omission errors), errors of inclusion (commission errors) and F-scores associated 
with each class in a classification. The overall accuracy of the ACI is calculated by dividing the total number of 
correctly classified fields in the error matrix by the total number of fields in the matrix. Omission error (producer 
accuracy) refers to the probability that a reference field of crop class X is correctly classified as class X. Commission 
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error (user accuracy) refers to the probability that a field classified as class X is in reality class X. Where no fields are 
classified as one of the predefined reference classes, user accuracy is undefined. Finally, the F-score for each class, 
a class-specific indicator that is not affected by the information from other classes, is calculated as the harmonic 
mean of user accuracy and producer accuracy (Waldner et al., 2015). 

As part of the imagery classification process, the overall crop accuracy of the ACI is validated for each unique 
image-date combination. When mapped, these data provide detailed insight into the spatial variations in crop 
accuracy across Canada’s entire agricultural extent (figure 5). Although the ACI consistently achieves an overall 
target accuracy of 85 percent at the national scale, map accuracy varies from crop to crop, region to region, and year 
to year, depending on satellite data availability and the geographic representativeness of in situ training data (table 
3). In general, the highest mapping accuracies (greater than 90 percent) are found where crops display significantly 
different spectral characteristics at the time of the EO data acquisition, such as in the Canadian Prairie Provinces of 
Saskatchewan and Alberta. Elsewhere, however, accuracies are lower, and may vary from approximately 70 to 80 
percent. This variability is explained by two main factors that relate to limitations associated with the in situ and 
satellite data used in the classification process.

Figure 5. �Geographic coverage and overall mapping accuracies for AAFC 
Annual Crop Inventory, 2016.
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Table 3. 

Provincial variability in classification accuracy for the AAFC Annual Crop Inventory, 2015. (NFL = Newfoundland and Labrador, PE = Prince 
Edward Island, NB = New Brunswick, NS = Nova Scotia, QC = Québec, ON = Ontario, MB = Manitoba, SK = Saskatchewan, AB = Alberta, 
BC = British Columbia). Accuracies are not calculated for Provinces and years where insufficient ground validation data exists (or, not 
required to assure a high quality product, as in the case of NFL that is known to be 95% pasture).

First, there can be significant Province-to-Province variability in the number, density and quality (detail and 
accuracy) of in situ data used for training the RF classification and its validation. This variability is directly 
related to the different sources of the data. The highest-quality data tend to be those that: (a) are the most spatially 
representative of the agricultural landscape; (b) are of the highest accuracy through both space and time; (c) use the 
most detailed crop (thematic) classes; and (d) contain the large sample sizes required for training and validating the 
RF classifications. Data provided by the Provincial Governments of Alberta, Saskatchewan, Manitoba and Québec 
generally meet these all of these requirements (Note: while detailed data is provided by the Provincial Government 
of British Columbia, it focuses only on specific classes, and is thus not spatially comprehensive). In comparison, data 
for the remaining Provinces (Ontario, New Brunswick, NS, PEI and Newfoundland) are collected by AAFC staff 
using windshield surveys that paint a less spatially representative picture of the agricultural landscape as a whole. 
While crop maps generated from these data generally meet the AAFC’s target mapping accuracies, they can only 
do so at the cost of generalization, such that detailed classes (for example, wheat, barley and oats) are aggregated to 
a single broader class (such as cereals). Wider access to Provincially-collected ground data for all Provinces would 
eliminate discontinuities in class detail across the country.

Second, there is often significant regional variability in cloud cover, which can limit the amount of optical satellite 
data (currently Landsat-8) available for input to the RF classification. For example, while as many as three or 
four clear-sky Landsat-8 images can be acquired over the Canadian Prairie Provinces each growing season, this 
availability can be reduced to a single image (or, in the worst cases, no images) in Canada's coastal regions (mainly 
the agricultural regions in the eastern Maritime Provinces of Newfoundland and Labrador, New Brunswick, NS and 
PEI). While the AAFC places a heavier reliance on the monthly acquisition of microwave (RADARSAT-2) imagery 
for input to the RF classification process in these regions, the lack or absence of optical imagery still results in a 
10 to 15 percent drop in map accuracy compared to other regions where optical data is more available. This issue 
should become less problematic in the future as access to new streams of optical (such as Sentinel-2) and microwave 
imagery (such as Sentinel-1; RADARSAT Constellation Mission, 2018) increases. 
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2009 2010 2011 2012 2013 2014 2015

NFL -- -- -- -- -- -- --
PE -- -- 67.5 78.7 87.9 81.0 83.7
NB -- -- 88.1 88.0 87.3 89.1 86.1
NS -- -- 64.2 89.9 74.2 64.4 85.2
QC -- -- 81.4 81.8 87.5 83.9 87.1
ON -- -- 80.8 76.2 88.2 87.9 89.6
MB 79.0 85.9 85.4 90.3 90.0
SK 87.1 82.4 86.5 85.9 89.7
AB 87.7 88.4 89.9 89.4 88.9
BC -- -- -- -- 79.2 88.4 --

CANADA 80.0 85.1 85.3 83.9 86.0 87.4 85.0

Overall	Accuracy	(per	year)	(%)

Province

80.0 85.1
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It should finally be noted here that confusion matrices, despite their common use, are limited in their inability to 
provide more detail on the source of error that can be linked to the performance of the classification algorithm or 
to the spatial resolution of the remote sensing data (Boschetti et al., 2004). For this reason, the AAFC is currently 
evaluating the use of another method – the De Finetti Entropy Triangle (ET) (Valverde-Albacete and Peláez-Moreno, 
2010) – for their classification error assessment. This approach, with a solid information-theoretical basis, has not yet 
found common use in remote sensing classification studies, but may provide a more faithful indication of classifier 
performance than the accuracies derived from confusion matrices (Valverde-Albacete and Peláez-Moreno, 2014). 

4.4.3.9. Comparisons with crop area estimates from statistical surveys (Census of Agriculture)
An additional validation of the AAFC ACI is undertaken every five years using statistical information obtained 
during the national Census of Agriculture by Statistics Canada. Statistics Canada is the agency responsible for 
collecting, compiling, analysing, reporting and publishing information relating to the commercial, industrial, 
financial, social, economic and general activities and condition of the people of Canada (Government of Canada, 
2008). A comparison of the ACI and the Census of Agriculture (figure 6) for the most recent census year of 2011 
by Fisette et al. (2014) revealed that: (a) at the national scale, the ACI overestimates the agricultural area of 
Canada by 15 percent compared to the 2011 Census of Agriculture; and (b) at more regional scales, the ACI tends 
to overestimate the cultivated areas of major crops (for example, forage, cereals, oilseeds) and, with the exception 
of corn and fruits, underestimate acreages of minor crops, sometimes drastically (such as fallow, pulses). The 
differences between the estimates provided by these two different sources of information must be reconciled. 

The disagreements between the 2011 ACI and the Census of Agriculture are explained by inconsistencies in the 
sample size and spatial distribution of in situ data used to train the RF classification. The accuracy of mapped crop 
classes depends greatly on the adequacy of the training data to represent each class (Pal and Mather, 2003). Of 
particular importance is whether a mapped class is under- or overrepresented in the sample data. Classes in the ACI 
that are overrepresented in training data are typically overrepresented in the output map at the expense of marginal 
(minor) crops, the acreages of which are underrepresented. These biases generally support the observation that 
remotely sensed crop area estimation through simple pixel counting is insufficient to provide unbiased estimates of 
seeded area (Gallego, 2004 and 2006).
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Figure 6. �Comparison of crop area estimates derived from AAFC Annual Crop 
Inventory (2011) with the Canadian Census of Agriculture (2011).
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Various statistical techniques have been proposed (and applied) to reduce the bias of simple pixel counting for 
crop area estimation. One such approach is the regression estimator, a method that combines unbiased information 
measured on a sample (that is, by means of ground surveys) with exhaustive but inaccurate and biased information 
(that is, classified satellite images) (Gallego, 2004 and 2006; Gallego et al., 2010 and 2014). The regression estimator 
uses a classified satellite image as an auxiliary variable to reduce the bias of estimates derived from ground surveys. 
While this approach has been widely applied in large operational projects for crop area estimation with remote 
sensing (see for example Wall et al., 1984; Chhikara et al., 1986; González-Alonso and Cuevas, 1993), the value 
added by the remote sensing strongly depends on the accuracy of the classification and is directly proportional to 
the effort made in the ground survey (Gallego et al., 2010). 

The AAFC has developed a modified version of the regression estimator to directly address bias in its ACI-derived 
estimates of crop area. This approach, not yet operational, supplements existing ground survey information with very-
high-accuracy local (24 km x 24 km) crop maps that are derived from fine-resolution remote sensing observations 
and high-quality ground survey points. The high quality of these maps means that they can be used to compensate 
statistically for the sparse and inconsistent coverage of ground survey points in these regions and, in effect, can be 
treated as the equivalent of unbiased ground surveys. Matching area estimates from these high-accuracy local maps 
with those derived from corresponding locations in the ACI enables crop-specific mathematical relationships to be 
derived for area estimates based on sampling (area estimates from the high-quality remote sensing maps) and pixel 
counting (area estimates from the ACI). These relationships are then used to adjust the ACI-based area estimates so 
that the accuracies of individual crop area estimates, as well as total cropped area, are increased. 

4.4.3.10. Map legend standardization
The thematic classes used during the crop classification process can vary from application to application and from 
country to country. This is problematic because these incompatibilities hamper the aggregation toward broader 
regional and global data sets (Giri, 2012). As a result, the classes used for crop identification and mapping are 
usually based on national or international classification schemes that provide the best semantic interoperability 
with other land cover classifications, and facilitate direct classification-to-classification comparisons (Jensen, 1986; 
Teleguntla et al., 2016). To this end, the AAFC ACI uses a harmonized legend based on the Canadian Forest Service 
(CFS) Earth Observation for Sustainable Development (EOSD) Land Cover Classification (Wulder and Nelson, 
2001). This legend is compatible with a number of internationally recognized legends, including FAO’s Land Cover 
Classification System (LCCS) (Di Gregorio and Jansen, 2000).

4.4.3.11. Data publication and use
As part of the Canadian Government’s commitment to open science, the ACI data are made available at no cost 
to the public. ACI data are distributed in raster format (GeoTIFF) in the Albers Equal Area (AEA) projection. The 
AAFC metadata – information that accompanies and describes the data set – are based on ISO 19131 standards and 
made available in Canada’s two official languages (English and French). To date, annual crop maps are typically 
made available approximately eight months after the end of growing season (that is, the March following the end 
of the growing season mapped). Downloads of the ACI have increased annually since 2009, making it one of the 
Government of Canada’s most downloaded geospatial data sets. 

The downstream uses of the ACI are varied. The ACI has been extensively used by the Canadian public sector at 
various levels. At the federal government level, the ACI has been used to support applications and assessments 
relating to a diverse range of issues, including: (a) crop area estimation; (b) regional-scale yield modeling; (c) 
climate-related production risk; (d) soil erosion modelling; (e) agriculture-related greenhouse gas emissions and 
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removals; (f) bird population changes; (g) environmental sustainability indicator reporting; (h) urban changes 
in Canadian metropolitan areas; and (i) air quality assessment. At the provincial government level, uses of the 
ACI include: (a) assessing general agricultural trends; (b) wetland biodiversity assessment; (c) agriculture-related 
stewardship program design; (d) mapping riparian land use; (e) modelling nutrient transport through watersheds; 
and (f) urban expansion and land use planning. However, this data set has also found wide use in other sectors 
of the economy. For example, commodity groups have used the ACI to not only target and implement strategies 
to meet regionally specific needs of growers, but also as a screening function to demonstrate compliance with 
international sustainability certification criteria (for example, the European Union’s Renewable Energy Directive 
(EU-RED) relating to land use conversion). Universities and colleges have used the ACI to support research activities 
relating to pest occurrence and management, trends in crop rotation, and pollinator distribution and conservation. 
Agribusinesses have used the ACI to independently validate agricultural land use for aggregating carbon offset 
credits in the agricultural sector, map flooded areas by crop type for insurance claim verification, calibrate models 
for estimating seeded areas immediately after harvest, and analyse draw areas for grain elevators. 

4.4.3.12. Applicability of ACI methodologies to other countries 
The methodologies used to generate the ACI are already being used to guide international standards for data products 
and reporting, and will help support the development of a global system of systems for agricultural crop assessment 
and monitoring under the GEOGLAM Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative. 
To this end, and to facilitate the transfer of methodologies to other nations with similar cropping systems, the AAFC 
is in the process of documenting its processing methodologies in detail for future open distribution. While the 
data processing chain implemented at the AAFC relies mostly on proprietary image processing and Geographical 
Information System (GIS) software packages and modules, it could also be implemented using other software 
systems, including open-source software. Open-source software – computer software the source code of which 
is made available with a license that allows the copyright holder to study, change and distribute the software to 
anyone and for any purpose – is particularly attractive because it is usually available at no cost. The attractiveness 
of the Canadian approach to crop mapping lies in its relatively modest requirements in terms of human resources 
(five full-time staff) and cost (Can$150 000 annually) compared to other large nations (such as the United States 
of America or China). 

4.4.3.13. Future development and implementations
Despite the demonstrated success of the ACI, certain areas of development yet remain to be addressed if it to be 
capable of meeting the future needs of the AAFC and its clients in a cost-effective and computationally efficient 
manner. Of particular interest is the production of within-season crop acreage estimates that would be released as 
precursors to the final ACI product release. Achieving this objective will require: (a) negotiations for earlier access 
to the ground observations provided by provincial agencies that are used to train and validate the ACI; (b) further 
optimization of classification routines – such as a switch from pixel-based to object-based mapping – to reduce the 
computational overhead that makes within season-estimates impossible; and (c) incorporation of new and future 
data streams (such as Sentinel-1, Sentinel-2 and Sentinel-3; and the RADARSAT Constellation Mission – RCM 
– that is scheduled for launch in 2018). In addition, the extrapolation of the ACI methodologies to more complex 
cropping systems – such as multiple cropping systems (agriculture that involves planting more than one crop on the 
same land in one year) and mixed cropping systems (agriculture that involves planting two or more types of plants 
simultaneously in the same field) – requires further development and testing.
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4.5. Conclusion

This chapter has summarized recent progress made to advance applications of remote sensing technologies for the 
creation of national-scale detailed crop maps (CDLs) at the field (parcel) level.

The creation of accurate and detailed crop maps requires high-quality ground and high quality multitemporal satellite 
data. High-quality ground data are for training and validating the supervised classification approach used to classify 
satellite imagery. While ground data provided by local, regional and national government agencies are usually the 
most accurate, detailed and complete, other sources of data are required in their absence. This leads to additional 
challenges for crop mapping in parts of the world where authoritative spatially explicit field-level information is 
unavailable (in other words, where the data are not collected or are not made available for use), and particularly, 
where ground data collection through alternative methods is difficult or impossible (for example due to limited 
resources (money, time, people); limited accessibility (poor road infrastructures and remote agricultural regions); 
or armed conflict)). Nonetheless, no matter the source, acquired ground data require considerable evaluation ensure 
that the data is ready for use in classification. High-quality satellite observations can be obtained from various optical 
or SAR sensors; however, they must be collected at a spatial resolution that allows individual fields to be resolved, 
and at times, during the growing season, that coincides with the key growth stages of crops being assessed. The 
most accurate detailed national crop mapping generally occurs when moderate-resolution spectrally rich time series 
are acquired that contain no gaps.

An extensive review of the published literature suggests that while there is no single best image classification 
method for detailed crop mapping, methodologies based on machine learning generally outperform others. Of these 
methods, Random Forest has already been incorporated operationally into national mapping strategies using optical 
data (United States) and optical and SAR data (Canada) and SAR data (United Kingdom). Other approaches – such 
as artificial neural networks and support vector machines – have also shown great potential. However, until now, 
such methods have mainly been limited to applications in the research (non-operational) domain. 

Crop area estimation based on satellite-derived crop maps must be carried out with caution and incorporate methods 
for assessing and correcting bias. Bias occurs because pixel counting frequently underestimates the seeded area of 
minor crops and overestimates the seeded area of major crops. These disparities caused by inconsistencies in the 
sample size and spatial distribution of in situ data used to train classifications, and generally support the observation 
that current remotely sensed crop area estimation is insufficient to provide unbiased estimates of seeded area. 
Bias can be reduced through the use of statistical tools, such as the regression estimator, a method that combines 
unbiased information measured on a sample (ground surveys) with exhaustive but inaccurate and biased information 
(classified satellite images). 

Future opportunities for detailed crop mapping will be great and come from the adoption of new and improved 
optical and SAR data satellite streams that, in combination or isolation, will allow a better characterization of 
crop-specific growth cycles at the field level. However, this will not be without challenge. The ability of national 
mapping agencies to incorporate this information in a timely and efficient manner will require significant investment 
in information technology infrastructure to facilitate the processing of significantly greater volumes of data. 
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Chapter 5

Crop area estimation with remote 
sensing
Shibendu S. Ray & Neetu

5.1. Crop area estimation: introduction

Crop production information, which is essential for various economic planning and agricultural market management 
(Gallego et al., 2014), has two components: crop area and crop yield. Among these two, it is always assumed that 
estimation of the area is comparatively simpler and more straightforward than estimation of the crop yield. However, 
crop area estimation presents several challenges and complexities, which may not be readily apparent (Craig and 
Atkinson, 2013).  

Factors which determine the complexity of crop area estimation include, but are not limited to, the following: 
small field size, scattered and diversified cropping patterns, mixed cropping system with phenological differences, 
extended sowing process (for example, in India, the planting of rice progresses from June to September), changes 
in cropping pattern, short-duration crops, cropping in homesteads, complex physiography (such as crops grown 
on hillsides through terrace or contour farming), complex seasonality (sugarcane having a main crop and a ratoon 
crop; or crops growing in multiple seasons depending upon climate diversity). In addition, there may be changes 
in the crop sown area due to damage, which may be caused by both biotic (weather) and abiotic (pest and disease) 
factors. Furthermore, the crop area estimation must take place at multiple stages: before sowing (specifically, the 
date of intended sowing, which depends upon the profits obtained in the previous year from the crop and weather 
forecasts); during early sowing; at mid-season and before harvest (Vogel and Bange, 1999). 

Craig and Atkinson (2013) have provided a review of the methods used for crop area estimation. Conventionally, 
crop area is estimated either by complete enumeration of all farms or by samples. The sampling may be Area Frame 
Sampling (AFS), farm list sampling or a combination of both; the latter case is called multiple frame sampling. 
In some cases, it also involves the expert opinion of voluntary crop reporters. Other sources of crop area may be 
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administrative surveys, crop processing units (for example, cotton or jute mills) and markets. The final estimate is 
generated either by direct reference to the survey data or by a panel of experts, which reviews data from different 
sources and finalizes the estimates. 

However, the conventional method of crop area estimation is time-consuming, costly, tedious and subject to human 
bias. It is also extremely difficult in several land types, such as hilly terrains. To overcome these problems, satellite 
remote sensing has been used for crop area estimation, either directly or to support the area sampling schemes. 
Satellite remote sensing provides temporal, synoptic, multispectral and multiresolution images of land use and land 
cover and offers the ability to classify different crops.

Use of satellite-based remote sensing data for crop area estimation dates back to the early 1970s, when the Corn 
Blight Watch Experiment was jointly carried out in 1971 by the U.S. Department of Agriculture (USDA), the 
National Aeronautics and Space Administration (NASA) and a number of universities (Sharples, 1973). In 1972, 
the ERTS-A was successfully launched and NASA conducted joint experiments with the USDA to establish the 
feasibility of surveying major crop types from space with multispectral remote sensing technology (Bryan, 1974). 
Experiments such as the Crop Identification Technology Assessment for Remote Sensing (CITARS) experiment 
and the Large Area Crop Inventory Experiment (LACIE) were conducted to demonstrate the capabilities of remote 
sensing in the context of crop inventory (MacDonald, 1984). The CITARS experiment evaluated classification 
procedures and alternative analysis techniques for corn and soybean crops. 

LACIE was the first program sponsored by the Government of the United States of America aimed at examining the 
feasibility of using remotely sensed satellite data – specifically, Landsat data – to estimate wheat production over 
large geographic areas (Nellis et al., 2009). The LACIE programme was first operated in 1974 in the Great Plains of 
the United States of America, and was extended to include Canada and the former Soviet Union (MacDonald, 1984). 
The successes of LACIE led to a follow-on project in 1980 called Agriculture and Resources Inventory Surveys 
Through Aerospace Remote Sensing (AgRISTARS). The goal of this new program was to expand upon LACIE 
and include monitoring of other crops such as barley, corn, cotton, rice, soybeans and wheat (Holmes et al., 1979). 
The AgRISTARS program was successful in demonstrating the value of timely data and limited ground reference 
information for identifying crops and predicting yield. 

5.1.1. 	L ACIE 
The LACIE experiment proved to be a potential model for other programmes designed to globally measure other 
terrestrial plant communities by remote sensing from satellites (Erickson, 1984; MacDonald and Hall, 1980). 
The LACIE experiment was a joint programme of NASA, the National Oceanic and Atmospheric Administration 
(NOAA) and the USDA, and was the first operational agricultural assessment programme to demonstrate the 
potential uses of Landsat data. LACIE envisaged three phases: Phase I (conducted between 1974 and 1975) 
developed a methodology in the Great Plains (area estimation was performed in a quasi-operational mode, while 
yield and production estimation were performed in a feasibility test mode); Phase II (1975-1976) evaluated the 
methodology in the Great Plains, Canada, and in “indicator regions” in the former USSR (the quasi-operational 
wheat area estimation was extended to yield and production); Phase III (1976-1977), in which a second-generation 
technology, developed in Phases I and II, was used to forecast the 1977 Soviet wheat crop at country level. The 
project also conducted exploratory studies in India, China, Australia, Argentina, and Brazil (MacDonald and Hall, 
1980). The area was estimated from selected sample segments using Landsat data, while yield was estimated using 
weather-based models with data from the World Meteorological Organization (WMO).

LACIE used a performance envelope of 90/90, which means that in 90 percent of the cases, the error was within a 
10 percent range. The results from LACIE were more reliable for the former USSR, and also met the 90/90 accuracy 
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criterion for the Great Plains. Although the results for Canada, India, China, Australia, Brazil and Argentina were 
encouraging, they did not meet the 90/90 accuracy goal (MacDonald and Hall, 1980).

Hanuschak et al. (1982) have described how Landsat was successfully used from 1972 to 1982 for the USDA’s 
Statistical Reporting Service (SRS), towards improving (i) the area sampling frame (ASF) and (ii) the regression 
estimation of crop area.

Subsequently, many methodology development and demonstration programmes were carried out in various countries 
to explore the use of satellite-based remote sensing data in crop area estimation (Dadhwal et al., 2002). 

Currently, many countries use remotely sensed satellite data for different aspects of crop area estimations. Table 1 
presents a summary of satellite data utilization in various operational national crop area estimation programmes. 
Countries use different types of satellite data and various approaches, which are described in the subsequent 
sections. In section 3, two national programmes (USDA/NASS’s Cropland Data Layer (CDL) programme and 
India’s Forecasting Agricultural Output using Space, Agrometeorology and Land-based observations (FASAL 
programme), one regional programme (the European Union’s Joint Research Centre’s Monitoring Agriculture with 
Remote Sensing (EU JRC/MARS) Area Estimate) and two global programmes (the USDA’s Foreign Agriculture 
Service (FAS) and China’s CropWatch) are discussed in detail to understand various aspects of satellite data use. 

5.2. �Approaches to crop area estimation using remote 
sensing

The basic principle guiding the use of remote sensing in the context of crop identification and classification is 
founded on the fact that crops look different (have different spectral signatures) in multispectral data due to their 
different structure, physiology, cultural practice and phenology. With the support of selected ground information, 
called ground truth, crops may be identified. This concept is used in four broad approaches for crop area estimation 
using remote sensing data: (i) ASF design; (ii) direct estimation or pixel counting; (iii) regression estimator; and 
(iv) calibration estimator.

5.2.1. 	ASF design
Chapter 3 of this handbook addressed the use of remote sensing for sampling frame design. For this purpose, 
satellite imagery is of the utmost value, as it provides a table of reference when elaborating the population frame; 
in particular, it may be used to subdivide areas of interest into enumeration areas (EAs) in which list frames of 
holdings are defined, and it helps with the definition of area frames composed of primary and secondary sampling 
units (PSUs and SSUs respectively), which are readily identifiable in the digital imagery (Delincé, 2015). The crop 
proportion derived from remote sensing data, either through visual interpretation or digital classification, is used to 
characterize spatial variability and, in turn, a parameter of stratification for area frame sample design. There are two 
types of area frame: (i) an area frame with physical or natural boundaries; and (ii) an area frame having a regular 
shape (grid sampling). 

In figure 1, an example of a regularly shaped (5 x 5 km grid) area frame is shown for India’s Bihar State, as assessed 
under India’s FASAL project. The classified crop map (figure 1a) is used to stratify the 5 x 5 km segments into 
four strata (A type: over 50 percent constituted by crop area; B type: between 30 and 50 percent, C type: between 
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15 and 30 percent, D type: between 5 and 15 percent). A unique identification number is provided for each 5 x 5 
km segment. After stratification, approximately 15 percent of the sample segments (table 2) are selected from each 
type for final analysis. Approximately 50 percent of these sample segments are visited in the field for ground truth 
data collection. 

Figure 1. AFS Design for Bihar State, India, under the FASAL programme.

1a) Classified crop map of Bihar State. 1b) 5 x 5 km grids overlaid onto the classified image, with each grid stratified into four classes (A, 
B, C and D) based on crop proportion. The figure shows selected sample segments (approximately 15 percent) from each type.

Square segments are not the only possible approach for constructing area frames. In FAO’s study on rice area 
estimation in Afghanistan (FAO, 2017), irregular segments, with limits constituted by physical boundaries, were 
used. Due to a complex local landscape, the ASF was designed at multiple levels: there were PSUs (of 500 to 700 
ha), SSUs (from 200 to 300 ha) and Terminal Sampling Units (between 25 and 35 ha). The stratification was based 
on crop intensity (greater than 75 percent, between 50 and 75 percent, between 25 and 50 percent, and lower than 
25 percent). Frame design definition and survey optimization were based on imagery from Pleiades to MODIS.

ASF design using remote sensing data provides a high stratification efficiency. Carfagna (2013) noted that in the 
pilot areas of the MARS Project, in most cases, efficiency ranged from 1.1 to 1.6 percent. Gallego et al. (1999) 
found the efficiency to lie between 1.7 and 2.2 percent for main crops in Spain. In India, for rice crop estimation 
using microwave data (Special Aperture Radar, or SAR), the efficiency of stratification ranged from 1.0 to 2.68 
percent (table 2). 

The Coefficient of Variation (CV) is another parameter that characterizes the usefulness of stratification. In India, for 
rice areas between 1 million and 3 million ha (at state level), the CVs ranged between 1.15 to 3 percent for sample 
sizes of 1229 and 450 ha respectively. For rice crops, a significant negative correlation was found between the CV 
and the crop area at a fixed sampling rate (approximately 15 percent). From the study of ASF design in various 
countries, Delincé (2015) also found that the CVs increased as crop area decreased.
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Table 1. Use of remote sensing for crop area estimation in different countries

Country Organization Name of The Programme Satellite Data Scale Crops Approach Ref.

Afghanistan FAO

ProbaV,   Aqua/Terra,   Landsat 
8,   Sentinel 1, Sentinel 2, 
SPOT 5, 6 &7 and  Pleiades  
1A  &  1B

District, 
Province

Rice

AFS design, image 
classification 
and regression 
estimator

FAO, 2017

Argentina

Secretaría de Agricultura, 
Ganadería, Pesca y 
Alimentos de la Nación 
Argentina (SAGPyA)

Landsat
Wheat, corn, 
soybean

ASF and 
classification

Justice and Becker-
Reshef, 2007

Asia (6 
countries)

International Rice 
Research Institute (IRRI)

Remote Sensing 
based Information and 
Insurance for crops in 
Emerging economies 
(RIICE)

X-band SAR from  COSMO-
SkyMed; TerraSAR-X

Selected 
sites

Rice
Image 
classification

Nelson et al., 2014

Australia University of Queensland MODIS EVI
Wheat, barley, 
chickpea

Harmonic 
analysis, Principal 
component 
analysis

Potgieter et al., 
2007

Brazil
Companhia Nacional de 
Abastecimento (CONAB)

GeoSafras Landsat & MODIS
Corn, soybean & 
wheat

Regression 
analysis

Fontana et al., 2006

Canada Statistics Canada Still at research level Landsat 8 Classification
Brisbane and Mohl, 
2014

China
National Bureau of 
Statistics (NBS),
Ministry of Agriculture

Crop Acreage Estimation 
by using Remote Sensing 
and Sample Survey 
(CAERSS) 

China Agricultural 
Remote Sensing 
Monitoring System 
(CHARMS) 

Province
Corn, rice 
and soybean

AFS system 
and regression/ 
calibration

Pan et al., 2012

Ethiopia University of California Research study Ikonos, Landsat District Cropped area
AFS and 
classification

Husak et al., 2008

European 
Union (28 
countries)

JRC MARS Landsat TM & SPOT XS
EU, Member 
State 

Wheat, barley, 
maize, rice, pulses;  
rape, sunflower, 
sugar beet

Stratification 
and regression 
estimator

Gallego, 2000 and 
2006
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Hungary
FÖMI Remote Sensing 
Centre

Crop Monitoring and 
Production Forecast 
Program (CROPMON)

Landsat and IRS-1C/1D County Wheat, maize
Image 
classification

Csornai et al, 2006

India

Mahalanobis National 
Crop Forecast Centre 
(MNCFC), (Department of 
Agricultural Cooperation 
& Farmers Welfare, or 
DAC&FW)

FASAL
Resourcesat 2: AWiFS& LISS 
III; Landsat & Sentinel 2; 
RISAT-1 SAR

District, 
State, 
National

Rice, wheat, 
cotton, sugarcane, 
sorghum, jute, 
rapeseed and 
mustard, potato

ASF design 
and Image 
classification

Ray et al., 2015

Pakistan
Space and Upper 
Atmosphere Research 
Commission (SUPARCO)

SPOT 5 Province 
Wheat, rice, cotton, 
sugarcane, maize, 
potato

Image 
classification and 
AFS system

Ahmad et al., 2015

Russian 
Federation

Ministry of Agriculture Agrocosmos MODIS 16 Day NDVI Product
Oblast/ 
District

To support 
agricultural 
censuses

Temnikov and 
Sergey, 2007

Spain
Regional Ministry of 
Agriculture

Castile and León crops 
and natural land map

Deimos 1 & Landsat 8 CDL
Classification using 
a machine learning 
algorithm

Medina and Garcia, 
2015

South Africa
National Crop Statistics 
Consortium

Producer Independent 
Crop Estimate System 
(PICES)

Landsat Province Sunflower, maize
Image 
classification

Ferreira et al., 2006

USA USDA/NASS CDL 
Resourcesat AWiFS, Landsat 
ETM+

State
Cotton, wheat, 
sorghum, rice, 
soybean, etc. 

Regression 
estimator

Bailey and Boryan, 
2010
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Table 2. Rice sampling plan, CVs and stratification efficiency for various states of India as used under the FASAL Project. 

State
Population of 5 x 5 km grids Samples of 5 x 5 km grids

Population 
total

Sample 
total

Sampling 
fraction CV

(%)
Stratification 
efficiency

A B C D a b c d N n %

Andhra 
Pradesh

316 581 736 1201 49 91 111 174 2 834 425 15 2.37 2.68

Assam 524 840 937 681 96 120 125 84 3 000 425 14 1.77 1.46

Bihar 646 989 1091 784 109 145 166 109 3 510 529 15 1.60 1.230

Chhattisgarh 711 979 1042 1 347 111 154 159 203 4 079 642 15 1.31 1.56

Haryana 273 265 339 499 46 53 61 93 1 376 253 18.4 2.28 2.66

Jharkhand 233 552 747 872 47 89 127 141 2 404 404 16.8 1.81 1.234

Karnataka 195 521 741 1 350 41 91 123 203 2 807 458 16.3 3.09 1.22

Madhya Pradesh 273 460 826 848 59 79 130 128 2 407 396 16.4 2.95 1.00

Punjab 462 554 503 387 72 105 93 78 1 906 348 18.2 1.52 1.53

Uttar Pradesh 1 332 2 218 2 154 1 826 227 364 367 318 7 530 1 276 16.9 1.15 1.40

A type: > 50% crop area; B type: 30–50%, C type: 15–30%, D type: 5–15%
Stratification efficiency is the ratio between the variances of Simple Random Sampling (SRS) and stratified sampling.
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Figure 2. �CVs of estimates as a function of rice crop area in different states 
of India.

5.2.1.1	 Direct estimation or pixel counting
In this approach, the satellite image is classified using the ground truth collected from sample locations. The number 
of pixels under each crop within an administrative boundary is multiplied by the pixel size to obtain the area of the 
crop. 

The image analysis is carried out in sample segments or on whole scenes (complete enumeration). In the case of 
sample segments, the area under each segment is estimated and statistically aggregated to obtain the total area. In 
complete enumeration, the image is overlaid with the administrative boundary (district/state/county/province), 
and the total crop pixels are counted and multiplied with the pixel size to obtain the crop area. Additionally, under 
complete enumeration, a crop map is available, which can be used for several other purposes, such as yield sampling. 

The classification can be either supervised (where classes are defined based on the ground truth) or unsupervised 
(and therefore based on the exploitation of the inherent tendency of different classes to form clusters in the feature 
space). Minimum-Distance-to-Means, Parallelepiped, and Maximum Likelihood (ML) are the common algorithms 
used for supervised classification; ISODATA and K-Means are the examples of classifiers used in unsupervised 
classification. The other newer approaches for crop classification include Hierarchical (Decision Tree) classifiers, 
Support Vector Machines, Artificial Neural Networks and Fuzzy-set classifiers. Prasad et al. (2015) have provided 
a survey of techniques that may be used for image classification. 

Classification is carried out using multitemporal moderate-resolution satellite data (MODIS, Resourcesat AWiFS or 
SPOT VGT) or single-date high-resolution data (Landsat OLI, Resourcesat LISS III or Sentinel 2 MSI). The costs 
of the various optical satellite data generally used for crop classification are presented in Table 3.

Nicolas Deffense



Handbook on remote sensing for agricultural statistics 139

Table 3. �Examples of the costs of various optical and microwave satellite 
data used for crop area estimation.

Satellite Sensor Product Specification Price (in euros)*

EO1 MODIS (Terra and Aqua) 250 m/500 m/1 km products Free

SPOT 5 

HRS

VEGETATION 2

20 m MS, 60 x 60 km
10 m MS, 60 x 60 km
5 m MS, 60 x 60 km
1 km products

1 900 
2 700
5 400 
Free

Landsat 8 OLI Free

Resourcesat-2@
AWiFS
LISS III 
LISS IV

56 m MS, 740 x 740 km
24 m MS, 140 x 140km
5.8 m MS, 70 x 70 km

222
96
147

Sentinel 2 MSI Free

Rapide Eye Multispectral
Basic/Ortho, Contiguous 3 
500 km2

3 325

RISAT 1@ C-Band SAR MRS, 18 m, 115 x 115 km2 69

Sentinel 1 C-Band SAR Free

Radarsat 2 C-Band SAR Wide 30 m; 150 x 150 km2 2 590

COSMO-SkyMed X-Band SAR
ScanSAR Wide 30 m; 100 x 
100km2

1 650 

Source: http://www.e-geos.it/products/ pdf/prices.pdf. Prices are for new acquisitions  
N.B. Readers are referred to chapter 1 for the detailed information on sensor characteristics

5.2.1.2. Multidate data analysis
Multidate data analysis is based on the concept of using the differences in the phenology (growing patterns) of 
different crops grown in the same area. Generally, a moderate spatial resolution with high temporal frequency data 
is used, such as MODIS (250 m, daily or eight-day products), SPOT VGT (1 km, daily or ten-day products) or 
Resourcesat 2 AWiFS (56 m, five-day products). Seven to ten dates of coregistered data covering the major part 
of the crop growing period is used for crop classification. A decision-rule (hierarchical) classification approach is 
used on multidate Normalized Difference Vegetation Index (NDVI) products to classify different crops based on 
their growth cycle. 

Figure 3 illustrates an example of fortnightly composite NDVI products, derived from Resourcesat 2 AWiFS data, 
for Uttar Pradesh State, India, during the rabi (winter) season (November/December to March/April). This data 
set is used to classify its major crops, which are wheat, rapeseed & mustard, potato and pulses. Temporal NDVI 
profiles for all of these crops are shown in figure 4. For potato, the NDVI increases sharply and peaks in end-
December and during the first fortnight of January. For mustard, NDVI increases from end-December and decreases 
towards end-February. The temporal profile for wheat shows an increase in the NDVI from January which continues 
throughout the growing period, which goes from December to April. For pulses, the different temporal signatures 
are comparable to those of other major crops. 
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5.2.2. 	Single-date data analysis
Single-date data analysis is based on the criterion that, during the maximum vegetative growth of the target, with a 
sufficient amount of ground information, it can be discriminated from other crop and land use/land cover classes. In 
this case, higher-resolution satellite data (such as from Resourcesat 2 LISS III, Landsat 8 OLI, or Sentinel 2 MSI) 
are used. Ground truth information is used for crop signature generation. Supervised classification (such as the 
ML Classifier) approach is followed for classifying the pixels under a particular crop. The pixel area is multiplied 
with the number of pixels to obtain the crop area under an administrative boundary. Figure 5 shows an example of 
mustard and wheat classification using Landsat data.

Figure 3. �Weekly/fortnightly composite NDVI images for Uttar Pradesh State, 
India.
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Figure 4. �Temporal NDVI (scaled) profile of various crop classes for Uttar 
Pradesh State, India.

Figure 5. �Landsat FCC (left) and Classified (wheat and mustard, right) images 
for Bhiwani District, Haryana State, India.Pradesh State, India.
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5.2.3. 	Use of SAR data for crop area estimation
In most South Asian and Southeast Asian countries where paddy rice is grown, it is difficult to obtain optical data 
during the rainy season (the major rice-growing season) due to persistent cloud cover. The issue of cloud cover 
can be addressed by using microwave SAR data. SARs are sensitive to surface roughness. Rice is generally grown 
through transplanting in flooded fields. Freshly transplanted rice plants provide a very low backscatter value due to 
specular reflection from standing water in the field (Choudhury and Chakraborty, 2006; Suga and Konishi, 2008). 
As the plant grows and develops tillers, the radar backscatter increases until the plant reaches the reproductive stage. 
This is due to volume scattering from the vegetation and multiple reflections between the plants and water surface 
(Chakraborty et al., 2006; Nelson et al., 2014). Beyond this stage, the radar backscatter remains nearly constant 
(Chkraborty et al., 1997). Therefore, typically, for rice area estimation using SAR data, data from at least three 
different dates is required: before planting, during planting and after planting, with a gap of approximately 20–25 
days between each date.

The general steps for processing SAR data for rice crops are the following:
•	 Image georeferencing;
•	 Image calibration and speckle removal using a predefined adaptive low-pass filter;
•	 Multidate (three dates) image coregistration and data set preparation;
•	 Conversion of pixel digital numbers to backscatter values;
•	 Overlaying of ground truth sites and identification of rice sites;
•	 Development of a decision rule based on the temporal profile of backscatter values for the rice crop (figure 6); 

and
•	 Rice crop classification and area estimation.

Figure 6. �Temporal profile of various rice classes for Mirzapur District, Uttar 
Pradesh State, India.

The typical example of decision rule for rice classification is given in the box below.
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5.2.4. 	Ground truth data
Ground truth is an essential component for crop classification, either as an input for building a classification 
algorithm or as validation of the classification. The ground truth is collected with respect to land use and land cover. 
Typically, ground truth for crop classification includes geographical location, the village, district or state, the name 
of the crop, the coverage, the condition, the stage, whether it is irrigated or rainfed, the expected yield, the sowing 
and harvesting dates, etc., along with two photographs (close view and wide view) of the field. The ground truth is 
collected from selected sample locations spread over the entire study region, covering all types of diversity. Various 
Android apps for smartphones have been developed for field data collection. The data collected through smartphones 
can be uploaded in real time to a central server for use by the analysts working on image analysis. In India, ground 
truth is collected by officials of the agriculture department of the individual state governments, and is then uploaded 
to the Bhuvan server (a geoportal of the Indian Space Research Organisation, or ISRO; see figure 7). 

BOX 2. 

•	 Urban: L1 > -6.0 AND L2 > -6.0 AND L3 > -6.0

•	 Water: L1 < -17.0 AND L2 < -17.0 AND L3 < -17.0

•	 Early transplanted rice: (-18.0 <= L1<=-14.0) AND (-12.0 < L2 <=-8.0) AND (-6.0 < L3 <= -2.0) AND 

(L2>L1+1.0) AND (L3>L2+1.0)

•	 Normal transplanted rice: (-10.0 <= L1<=-4.0) AND (-18.0 < L2 <-12.0) AND (-10.0 < L3 <=-3.0) AND 

(L1>L2+1.0) AND (L3>L2+1.0)

•	 Late transplanted rice: (-8.0 <= L1 <=-3.0) AND (-11.0 < L2 <-5.0) AND (-18.0 < L3 <=-14.0) AND 

(L2>L3+1.0)

Where

L1 = Backscatter Coefficient (dB) at first date

L2 = Backscatter Coefficient (dB) at second date

L3= Back scatter Coefficient (dB) at third date.
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Figure 7. �Ground truth data collected using smartphones, available on the 
Bhuvan geoportal.

5.2.5. 	Accuracy estimation: confusion matrix and relative deviation 
The confusion matrix, which is also known as the error matrix, represents the visualization of the performance of a 
classification. In table 4, the two dimensions show the actual or reference class and the predicted or classified pixels 
in columns and rows respectively. The confusion matrix summarizes the results and enables further inspection of 
the classification. 

Examples of confusion matrices for two classification scenarios (total area of crops and individual crops) are 
presented in tables 4 and 5 below. In the pilot study conducted in Kazakhstan, Gallego showed that the total area 
of crops (cereals and fallow) can be estimated by pixel counting with a subjectivity margin of approximately 5 
percent, while in India, the individual crop classification accuracy ranged between 70 and 90 percent, with an overall 
accuracy of 81.09 percent and Kappa statistics of 0.7606. Clauss et al. (2016), when mapping paddy rice in China 
using MODIS time series data, found an overall accuracy of 0.90 and a user accuracy of 0.90 for the no_rice and 
0.89 for the rice class.

Table 4. Example of confusion matrix for a pilot study in Kazakhastan.

Reference

Classification

Cereals + fallow Grass + abandon Total 
Producer 
Accuracy

Crop 1 470 + 152 57 1 679 96.6%

Grass + abandon 39 + 68 353 460 76.7%

Total 1 729 410 2 139

User Accuracy 93.8% 86.1%

Source: Gallego, J. 2008. Crop Area Estimation with Remote Sensing: Some considerations and experiences for the application to general 
agricultural statistics, presentation prepared for the Workshop on measurement of cultivation and production of coca leaves, 25–27 
November 2008, Bogotá. Available at: https://www.unodc.org/documents/crop-monitoring/Workshop_coca_leaves/Javier_Gallego1.pdf
Satellite data used: MODIS (250 m resolution)
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Table 5. Example of confusion matrix for Madhya Pradesh State, India.

  Reference data

Classified 
data

Gram Wheat Mustard Potato Pea Fallow Settle Lentil
 Row 
Total

User 
accuracy

Gram 153 28 0 3 6 5 2 0 197 78%

 Wheat 1 474 62 4 43 2 1 0 587 81%

Mustard 0 56 525 6 27 1 4 2 621 85%

Potato 0 25 28 334 48 0 0 0 435 77%

Pea 0 30 23 11 323 2 2 0 391 83%

Fallow 0 0 3 12 9 102 3 2 131 78%

Settle 3 2 0 1 6 4 112 5 133 84%

Lentil 0 12 9 0 1 0 1 99 122 81%

Column 
Total

157 627 650 371 463 116 125 108 2 617  

Producer 
Accuracy 

97% 76% 81% 90% 70% 88% 90% 92% 81.09  

Overall classification accuracy = 81.09 % 
Kappa statistics =0.7606
Satellite data used: Resourcesat 2 LISS III (23.5 m resolution)

While confusion matrices show the internal accuracy of classification, the accuracy with respect to a standard 
estimate (such as a ministry of agriculture’s estimates) is evaluated using various parameters such as relative 
deviation, the Root Means Square Error (RMSE) and the correlation coefficient. 

In India, the correlation coefficient between remote-sensing-based estimates and Ministry estimates for the state-
level area of four crops ranged between 0.986 and 0.999. When mapping paddy rice in China using MODIS time 
series data, Clauss et al. (2016) found a coefficient of determination between 0.91 and 0.93 with the Government’s 
estimates.
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5.3. Regression estimator

Methods such as regression, calibration and small area estimators combine exhaustive but inaccurate information 
from satellite images with accurate information on a sample, most often from ground surveys (Gallego, 2006).

Regression estimators are described in standard statistical texts (see for example Cochran, 1963). 

The estimator at regional level is (Sud et al., 2015): 

Many countries, such as the United States of America, Brazil and China, use a regression estimator for crop area 
estimation from remote sensing data. FAO (2017) followed a hybrid approach based on the integration of the area 
frame with image classification to enhance the accuracy of crop statistics. This approach was followed for rice area 
estimation in Afghanistan. The area frame was developed using satellite imagery from Sentinel-2 and SPOT-5 (having 
a spatial resolution of 10 m). The agricultural land within the pilot project area was stratified and systematic random 
segments were visually interpreted together with the ground information to estimation the crop statistics based on 
the area frame. Visual interpretation of the satellite imagery was used as a training sample in the supervised image 
classification algorithm to extract the pixel based crop estimates. The R2 in the linear regression in the variables of rice 
pixels and rice area in segments was 0.96. This showed a very high accuracy between these two systems.

In China, under the CAERSS project, crop area is estimated using a similar approach. First, by using multisource 
and multitemporal remote sensing, an area frame is constructed and updated for crop sample design. Second, a 
strategy for sample selection is developed to conduct a reasonable stratification and to select samples to be surveyed 
as ground truth. Finally, combining the ground survey data with the classified grain acreage from remote sensing 
imagery as auxiliary data, a linear model is adopted to produce the crop acreage estimation with satisfactory 
precision. The planted acreage estimation for major crops at provincial and county levels are thus generated. More 
details on the methodology and procedure are given by Zhou (2013). The CV of estimates by linear regression for 
three major crops (corn, rice and soybean) ranged between 4.2 percent and 7.0 percent. 
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5.4. Calibration estimator

Calibration estimators incorporate auxiliary information, represented by remotely sensed data, into the estimation 
process (Benedetti et al., 2015). The commission and the omission errors of a confusion matrix can be used to 
correct the bias. Stehman (2009) indicated that the reference information from a sample used to construct the 
confusion matrix can also be used to infer the area of the target, directly or via model-assisted inference. The direct 
estimator and inverse estimator are two approaches that utilize the confusion matrix to adjust the pixel count area. 
The difference between these two estimators is that the former employs the user’s accuracy, and the latter employs 
the producer’s accuracy. The main note of caution is that the confusion matrix must be computed using ground 
information on a statistical sample of points or segments (area elements) and that the extrapolation is correctly made, 
taking into account the sampling plan (Gallego et al., 2008).

To improve the accuracy of area estimation from classification, Zhu et al. (2014) explored the performance and 
stability of several model-assisted estimators. They used the confusion matrix calibration direct estimator, the 
confusion matrix calibration inverse estimator, the ratio estimator and the simple regression estimator to infer the 
areas of several land cover classes, using simple random sampling without replacement. Their comparison showed 
that confusion matrix calibration estimators, ratio estimators and simple regression estimators were capable of 
providing more accurate and stable estimates than the simple random sampling estimator.

5.5. Small area estimator

Small area estimation is important in survey analysis when domain (subpopulation) sample sizes are too small to 
provide adequate precision for direct domain estimators. In remote-sensing-based estimates, the accuracy may be 
good for large areas (country and states or provinces), because of the higher sample size; however, this may not be 
the case for smaller areas (districts or counties). To improve the accuracy of estimation for smaller areas, the Small 
Area Estimation (SAE) technique is followed. Various alternative methodologies have emerged to carry out the 
SAE; these can be grouped broadly into statistical approaches and spatial microsimulation approaches, each with 
multiple differing approaches within them (Whitworth, 2013). The statistical approach is based on the regression 
model that enables the relationship between a characteristic of interest and explanatory variable(s) to be formally 
assessed. Zhou (2016) used a combination of crop classification from satellite images with field survey data and 
SAE techniques to generate county- and town-level estimations of rice and corn.
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5.6. �Examples of national, regional and global crop area 
estimation programmes

5.6.1. 	National-level programmes

5.6.1.1. USDA/NASS’s CDL
The USDA/NASS provides timely, accurate and useful statistics for agriculture in the United States of America. 
The NASS conducts a large number of surveys to collect information about various aspects of agricultural activity. 
In 2010, the NASS CDL Program played an important role towards fulfilling this mission, using remote sensing 
techniques to provide operational in-season acreage estimates to the NASS Agricultural Statistics Board (ASB) 
and Field Offices (FOs) for 27 states and 16 crops (Baily and Boryan, 2010). The NASS has experimented with 
many pioneering programmes, including LACIE and AgRISTARS, to show the use of remote sensing data for crop 
acreage estimation. The NASS started the CDL programme in1997, with in-house software and Landsat data. In 
2006, the CDL underwent a major change, with the introduction of the use of commercial software and Resourcesat 
1 AWiFS data. The CDL product is a raster-formatted, georeferenced, crop-specific, land cover map (Boryan et 
al., 2011). In 2009, the CDL program played an important role towards providing operational in-season acreage 
estimates for 15 crops in 27 states. Boryan et al. (2001) provide an overview of the CDL program, describing various 
input data, processing procedures, classification and validation, accuracy assessment, CDL product specifications, 
dissemination venues and the crop acreage estimation methodology. Using the CDL as the foundation, NASS runs 
a regression estimator to produce crop acreage estimates.

Figure 8. 2009 Cropland Data Layers. 

Source: USDA/NASS. (https://nassgeodata.gmu.edu/CropScape/)
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5.6.1.2. India’s FASAL programme 
In India, crop estimation using remote sensing data started in the late 1970s, with a systematic study on crop inventory 
using Colour Infrared (CIR) aerial data carried out jointly by the ISRO and the Indian Council of Agricultural 
Research (ICAR) under the Agricultural Resource Inventory and Survey Experiment (ARISE) project (Sahai et al., 
1977).  Subsequently, many experimental studies were conducted using airborne data and, later, Landsat-1 data. 
These early studies using aerial and Landsat data are documented in Bhavsar (1980), Navalgund and Sahai (1985) 
and Sahai and Dadhwal (1990). With the launch of IRS 1A, a major national-level programme was launched for Crop 
Acreage Production Estimation (CAPE), under which the area and production estimation of major crops in district 
and state level was carried out. The research studies carried out under the CAPE programme helped to develop 
an optimum sampling plan, sensor specifications, accuracy figures, an optimum analysis procedure and in-house 
software for crop assessment (Dadhwal et al., 2002). Simultaneously, methodologies were developed for using 
SAR (initially from ENVISAT and later from Radarsat) data for rice area estimation, to overcome the problem of 
cloud cover during kharif (rainy season) (Patel et al., 1995; Panigrahy et al., 2000). Based on the experience gained 
under the CAPE project and various other pilot studies carried out, and on the requirements of the Indian Ministry 
of Agriculture, a comprehensive crop inventory project was developed – the FASAL programme.

The FASAL programme, which was officially launched in 2007, aimed at providing multiple pre-harvest district-, 
state- and national-level production forecasts using multiple approaches (econometric, remote sensing and 
agrometeorological), multiple satellite data (optical and microwave) for 11 major crops of the country (Parihar and 
Oza, 2006). After the methodologies were developed and optimized for crop production forecasting at the ISRO’s 
Space Applications Centre, the programme was operationalized at the MNCFC, which was established under the 
Ministry of Agriculture (Ray et al., 2015). The approaches followed in FASAL for crop production forecasting are 
illustrated in figure 9. 

Figure 9. �Approaches followed for crop production forecasting under the 
FASAL project.



Handbook on remote sensing for agricultural statistics150

The methodology adopted by FASAL for area estimation uses remote sensing data to: (i) design the sampling plan 
and (ii) to generate estimates through image classification, using single-date high-resolution data or multidate 
medium-resolution data. For rice and jute, RISAT-1 SAR data is used, while for other crops (wheat, rapeseed and 
mustard, sorghum, cotton, and sugarcane) Resourcesat-2 AWiFS, LISS III, Landsat OLI or Sentinel 2 MSI data 
are used. The rice and jute crops are analysed using a sample segment approach with a 5 x 5 km sample size and 
a 15 percent sampling fraction with four strata (the stratification is based on crop coverage in each segment). For 
other crops, a complete enumeration approach is followed. The ground truth data is collected using smartphone-
based Android apps. The yield is estimated using agrometeorological models (empirical and crop simulation), 
remote-sensing-based models and sample crop cutting experiment (CCE) data, where the CCE is done using a 
remote-sensing-based sampling plan. The estimates generated under the FASAL programme form one of the inputs 
for generating the final estimates of the MA&FW. A detailed discussion on the approach, results and accuracy of 
estimates of the FASAL programme is available in Ray et al. (2016). Based on the success of remote-sensing-based 
crop production, the MA&FW has launched a new programme for the Coordinated Horticulture Assessment and 
Management using geoinformatics (CHAMAN), for the inventorying of horticultural crops (mango, banana, citrus, 
potato, tomato, chilli and onion) and horticultural developmental planning (Ray et al., 2015).

5.6.2. 	Regional programmes

5.6.2.1. The EU/JRC’s MARS Programme 
The MARS project was conceived to develop large-scale operational tools in the field of agricultural information 
for satellite image analysis and related fields, such as area frame sampling and agrometeorological models (Gallego, 
2000). In the first period of the MARS project (1988–97), crop area estimation played a central role and envisaged 
two major components: (1) regional crop inventories and (2) rapid estimates of crop area change at EU level. Gallego 
(2000) summarizes the progress made during this period. The regional crop inventories combined high-resolution 
satellite images and ground surveys in a classical statistical scheme based on area frame sampling and ground visits, 
providing the main estimation variable through a regression estimator. The rapid estimates of crop area change 
attempted to provide an early estimate of crop area change at EU level on the basis of a sample of 60 sites of 40 x 
40 km each, without ground information. Both programmes were later abandoned, the first because it had almost 
reached the cost-efficiency threshold and the second due to its wide margin of subjectivity. 

Currently, the MARS’s AGRI4CAST sampling programme focuses on the Land Use/Cover Area-frame Survey 
(LUCAS) (Gallego and Delincé, 2010). Estimates of the area occupied by different land use or land cover types are 
computed on the basis of observations taken at approximately 2,70,000 points sample points throughout the EU, 
rather than mapping the entire area under investigation. By repeating the survey every few years, changes to land 
use can be identified1. LUCAS is a two-phase systematic stratified sampling process: in the first phase, the sample 
is photointerpreted; in the second phase, field data is collected from the samples. The latest LUCAS survey was 
carried out in 2012 in 27 EU countries, where total crop land constitutes 24.7 percent of the total area.

1    http://esdac.jrc.ec.europa.eu/projects/lucas.
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5.6.3. 	Global programmes

5.6.3.1. CropWatch (China)
CropWatch was developed by the Institute of Remote Sensing and Digital Earth (RADI) of the Chinese Academy of 
Sciences (CAS). CropWatch has four assessment levels: global (65 homogeneous crop Monitoring and Reporting 
Units MRU); regional (seven Major Production Zones or MPZs); national (31 key countries); and subnational 
(subdivisions of nine large countries) (Wu et al., 2015). Different indicators are selected at different levels to best 
characterize the environmental and agricultural information at the corresponding scale. The various indicators used 
at different levels of assessment include rainfall, air temperature, photosynthetically active radiation, agroclimatic 
biomass production potential, cropping intensity, cropped arable land fraction, vegetation health index, maximum 
vegetation condition index and crop type proportion. CropWatch adopts different crop area estimation methods for 
different countries. For China, remotely sensed estimates of arable land area and Cropped Arable Land Fraction 
(CALF) are combined with field-survey-based estimates of crop type proportion (Wu and Li, 2012). 

For other 30 key countries and provinces or states of nine large countries, CALF is used to estimate individual crop 
area using the following equation:

Crop area = a x b x CALF

where a and b are linear regression coefficients between the cropped area from FAOSTAT or, preferably, subnational 
data when available from the website of China’s Ministry of Agriculture or National Bureau of Statistics.

5.6.3.2. USDA FAS (United States of America)
The USDA FAS provides monthly crop condition assessments, monitoring and crop estimates for 17 global 
commodities; 159 countries; 1 020 country-crop pairs (for example, Australia-Wheat); and three attributes: area, 
yield and production (Hoffman, 2016). FAS uses various information, such as satellite imagery, attaché reports, 
crop travel, official data and news reports to conduct global crop assessment and monitoring. The USDA FAS uses 
data from eight of 18 of NASA’s Earth Observing fleet. FAS uses additional satellites from the European Space 
Agency (ESA), ISRO and private organizations. The FAS Crop Explorer Web Portal displays numerous weather 
and vegetation condition data sets over major crop regions every ten days. 

5.6.3.3. GEOGLAM
Following the global food price hikes in 2007–2008 and 2010, as part of the Action Plan on Food Price Volatility and 
Agriculture, the heads of state of the G20 countries endorsed, in their 2011 Declaration, both the GEOGLAM and the 
Agricultural Market Information System (AMIS) initiatives. GEOGLAM provides a framework that strengthens the 
international community’s capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural 
production at national, regional and global scales through the use of Earth Observations (EO), including satellite and ground-
based observations . Within this framework, GEOGLAM developed the Crop Monitor reports, which provide global crop 
condition assessments in support of the AMIS market monitoring activities2. Asia-Rice is the work of an ad hoc team of 
stakeholders with an interest in the development of an Asian Rice Crop Estimation & Monitoring (Asia-RiCE) component for 
the GEOGLAM initiative. In Phase 1 (2013–2015), Asia-Rice developed Technical Demonstration Sites (TDSs) in Chinese 
Taipei, Indonesia, Japan, Malaysia, Thailand and Viet Nam. Phase 2 of Asia-RiCE is intended to prepare rice growth outlooks 
for Indonesia, the Philippines, Thailand and Viet Nam, and provide them to AMIS (Asia-Rice, 2016).

2    https://cropmonitor.org/.
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5.7. �Cost-effectiveness of remote-sensing-based area 
assessment

Analysing the cost-effectiveness of a system requires its comparison with the cost that would be required pursuant 
to the use of alternative systems (such as traditional agricultural data collection systems) to achieve the same end 
result (Radhakrishnan et al., 1991). For remote-sensing-based area estimation, the costs include satellite data cost, 
ground truth collection cost and analysis cost. The benefits may consist not only in direct cost savings (achieving 
the same estimate in the reduced cost), but also in the improving the timeliness and accuracy of estimates. The 
accuracy can be assessed in terms of reduction in variance and increases in efficiency (for sampling designs using 
remote sensing). According to Carfagna (2001), the cost-effectiveness of remote sensing for agricultural statistics 
has long been debated and depends on several parameters, such as the level of fragmentation of the landscape, the 
weather conditions, the level of optimization and automation of the project, and the cost structure. Thus, different 
results have been obtained in different experiences.

Delincé (2015) has studied in detail the cost-effectiveness of the remote-sensing-based agricultural statistics of four 
national systems. These include Haiti (point area frame sampling), Morocco (area frame sampling), China (area 
frame sampling and regression analysis) and India (area frame sampling and pixel counting). His findings may be 
summarized as follows:
•	 For Haiti, the CNIGS’s point frame survey was analysed. The cost of stratification reflected the increased field 

survey costs of 3 percent; however, decreases in the variances of as much as 50 percent at regional level were 
obtained.

•	 In Morocco, the stratification based on land-cover maps of 66 000 km2 derived from expensive SPOT imagery 
increased annual survey costs by 30 percent. However, in view of the efficiencies obtained, the investment is 
worthwhile.

•	 In China, remotely sensed stratification covered 1.65 million km2. The cost increase was only 3 percent, but in 
Anhui province, relative stratification efficiencies of 2.8 for rice and 1.4 for corn were obtained.

•	 In India, radar and optical imagery is used to monitor 90 percent of the production of the eight major crops. A 
stratification efficiency for rice between 1.2 and 3.3 was achieved, and bias induced by pixel counting could 
be evaluated.

For USDA/NASS, which runs most important operational applications based on area frame surveys and remote 
sensing for agricultural statistics, the cost-efficiency analysis has yielded positive conclusions (Carfagna, 2013). 
According to Carfagna (2013), “remote sensing applications to agricultural statistics can be sustainable if their 
total cost fits in the budget without endangering the feasibility of surveys that cannot be substituted by satellite 
technology”. 

However, considering the availability of a great volume of free satellite data (from Landsat, Sentinel, etc.) and the 
significant reduction in the prices of Indian satellite data, the cost-effectiveness of remote sensing for crop statistics 
dramatically improves. 
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5.8. Issues and limitations

MacDonald and Hall (1980), while providing a summary of LACIE, wrote that “[a]gricultural information should 
have the qualities of objectivity, reliability, timeliness, adequacy of coverage, efficiency and effectiveness. Production 
statistics in many important agricultural countries do not meet any of these standards”. This may remain true in 
many countries today. Although – as seen in the examples shown above – remote sensing data from various satellites 
have been successfully used for different components (area sampling plan design, estimation by classification or 
regression) of agricultural statistics collection, there are still many issues which limit the use of remote sensing data 
for operational crop area assessment. These include:
•	 Small field size, especially in many countries in Asia and Africa (table 6), which requires high-resolution remote 

sensing data for crop identification.  
•	 Persistent cloud cover during rainy season. Clouds strongly limit the usefulness of optical imagery for agricultural 

applications (Eberhardt et al., 2016). SAR data is required to overcome the cloud problem. However, the 
usefulness of SAR data for estimation of crops other than rice is yet to be established. 

•	 Diverse cropping and agronomic practices. 
•	 Mixed and intercropping systems.
•	 Large varieties of crops grown in a small area, which occurs especially in the context of horticultural crops.

Other technical issues arising in the analysis and use of remote sensing data include the availability of sufficient 
amount of quality ground truth data describing the variability existing in the field; the computing power, sophisticated 
software and data storage facilities required to analyse multitemporal high-resolution data; and the availability of 
satellite data with a low turnaround time. 

Despite these issues, several studies have demonstrated the cost-efficiency of using remote sensing data for area 
estimation (Delincé, 2015; Gallego et al., 2014). 

With the current and proposed availability of many high-resolution remote sensing satellite constellations, the 
temporal frequency of satellite data and classification accuracy are expected to increase. There is a need to develop 
methodologies for the use of SAR data in the area estimation of crops other than rice. 

Various opinions have been expressed as to the methods to be used for area estimation, that is, the regression 
estimator or pixel counting. Carfagna and Gallego (2005) maintain that at the estimator level, classified satellite 
images should be used as auxiliary variables in a regression estimator or for estimators based on confusion matrices. 
They also mention that in general, classified or photointerpreted images should not be directly used to estimate crop 
areas because the proportion of pixels classified into specific crops is often strongly biased. 

However, for many applications, in addition to crop area, classified crop maps are also essential, such as for planning 
CCEs for crop yield. Furthermore, qualified staff are required if better execution for regression-based estimation 
needs is to be assured; however, such staff are not necessarily available, even in many official organizations (Gallego, 
2006). Craig and Atkinson (2013) opined that pixel counting estimates consistently underestimate the actual area 
under crop, a problem that can be remedied through regression. Therefore, it is necessary to adopt an integrated 
approach, which is a combination of sampling frame design, pixel counting and regression. 
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Table 6. Average size and fragmentation of agricultural holding, 1995–2005. 

Countries by continent 
(Number of reporting countries is given in parenthesis)

Average area per holding 
(hectare)

Average number of parcels 
per holding

World Total (114) 5.5 3.5 

Africa (25) 11.5 3.0

America, North & Central (14) 117.8 1.2

America, South (8) 74.4 1.2

Europe (29) 12.4 5.9

Asia (29) 1.0 3.2

Source: FAO, 2010.
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Chapter 6

Early Warning Systems and crop 
yield estimation  
Oscar Rojas, Natural Resources Officer, FAO SLM/CBC

6.1. Introduction

This chapter reviews the fundamental concepts relating Early Warning Systems (EWS) to crop yield forecasting, to 
better address climatic risks that have an impact on food security. System-based dissemination of timely alerts and 
specifications of the probability of hazard occurrence are fundamental components of Early Warning Information 
(EWI), and systematic linkages to early-action options and possibilities would go a long way towards saving lives 
and livelihoods.

Forecasting crop yields and aggregate production is significant in EWSs that seek to assess the food supply and 
demand situation of a given country or region. Accurate analyses of market conditions and identification of the 
surplus and deficit areas in a given country or region will contribute greatly towards the design of appropriate policy 
responses to food security problems – an important objective the achievement of which is greatly advanced by robust 
and accurate agricultural statistics. In this context, information derived from remote sensing plays a vital role in 
improving the production of agricultural statistics by introducing independent verifying mechanisms, particularly 
when area frame or multiple frame sample designs are used. Remotely sensed data and information can be introduced 
at both design and estimator levels.

6
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6.2. Early Warning Systems (EWS)

An EWS is an integrated system for monitoring, data collection and analysis, and communication to enable making 
early decisions to protect peoples and the environment (Davies et al., 1991). EWS focusing on agriculture and food 
security1 monitor people’s access to food, to provide timely notice of an impending food crisis and thus to elicit 
an appropriate response.  Whether an EWS succeeds in its goal of eliciting an appropriate response depends on 
numerous factors, most of which are beyond the control of the EWS itself (Buchanan-Smith, 2000). Normally, a 
EWS for food security should continuously monitor food production, stocks, prices, trade and consumption, and any 
extreme event, including climatic and market disruptions that could affect the food supply and demand situation. 
Box 1 presents a historic background to food security information systems. The precise form of an EWS will depend 
upon a variety of factors, including the data environment, the communication infrastructure, the intended users 
and the nature of the hazard (Bailey, 2013). Nevertheless, all EWS – for food shortage or other hazards – share 
some common elements: they collect early warning data, analyse it to produce EWI and communicate the latter to 
decision-makers (figure 1).

Figure 1. Elements of an EWS.

Data collection refers to the process by which the early warning data are gathered and collated. Important 
considerations include the appropriateness, timeliness and reliability of the data. Analysis & Forecasting refers to 
the technical activities of monitoring and generating EWI.  In this respect, significant factors include the parameters 
monitored, the methodology employed, the specific variables forecast and the level of confidence that may be 
attached thereto. Dissemination & Communication refers to the provision of EWI to relevant stakeholders. Key 
considerations relate to the channels through which warnings are disseminated, the stakeholders to which warnings 
are communicated and the format in which EWI is presented.

In many EWS, there exists a fundamental tension between timeliness and confidence. Inevitably, confidence in the 
accuracy of EWI will increase with time as more data are gathered and analysed, while the amount of warning time 
available will decrease. A second fundamental tension relates to the richness of EWI. Providing stakeholders with as 
much EWI as possible should help them to make better informed decisions. However, in practice, this is often not the 
case: stakeholders may lack the capacity to properly interpret the information, with the result that the key message is lost.  

1    “Food security exists when all people, at all times, have physical and economic access to sufficient, safe and nutritious food to meet their 
dietary needs and food preferences for an active and healthy life.” World Food Summit, 1996.
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The ideal food shortage EWS should therefore be able to anticipate both livelihood crises and humanitarian 
emergencies, and recognize them as different phases of the same process. By monitoring key risk factors such as 
weather, harvest data and market data alongside household economic data, it should identify livelihood stresses and 
shocks. This, in turn, should inform interventions to shore up livelihoods and avoid destructive coping strategies. 
EWS should detect whether the crisis appears likely to evolve into a full-blown emergency, thus enabling actors to 
prepare for a humanitarian response. At each stage of the process, early action should seek to prevent the crisis from 
escalating and to mitigate its impact on lives and livelihoods. Crisis calendars provide a means to identify when 
particular interventions are most appropriate (Bailey, 2013). 

Sivakumar (2014), referring to the context of contemporary droughts, calls for proactive future actions to be able to 
cope with their associated imperatives. Despite the repeated occurrences of droughts throughout human history and 
their large-scale effects on various socio-economic sectors, no concerted efforts have ever been made to initiate a 
dialogue on the formulation and adoption of national drought policies. The absence of a clear national drought policy 
implies that governments at the national, state and community levels will continue with the status quo, reacting to 
the impact of droughts with little coordination between national, state and local agencies. Bailey (2013) suggests 
that changing the status quo requires governments to anticipate political reward from acting to reduce shortage risk 
and to expect to be penalized for failing to do so.

A drought (hazard) alone does not trigger an emergency. Whether it becomes an emergency or a disaster depends 
upon its impact on local communities and the environment.  This, in turn, depends on the vulnerability of people 
and the environment to such a “shock”.

6.2.1. 	Plant pests and diseases
An estimated 30 to 40 percent of crops are lost each year to pests. Reducing this loss by only 1 percent could 
allow millions more people to receive adequate food. Over one-third of the world’s population – which is set to 
reach 9 billion by 2050 – is supported by 500 million smallholder farmers. Therefore, supporting farmers in their 
fight against pests is a global food security emergency. In 1994, the Food and Agriculture Organization of the 
United Nations (FAO) established Locust Watch2, which exploits the capabilities of current satellites to provide 
continuous estimates of rain-producing clouds and ecological conditions – such as vegetation development – that 
are important factors for monitoring desert locust habitats and forecasting locust development. Another recent 
development is the SATCAFE3, a system for monitoring potential climatic conditions that foster the proliferation of 
coffee rust (Hemileia vastatrix; see figure 2). Using mobile technology, SATCAFE collects the degree of infection 
at coffee-plantation level. Coffee rust is the most economically significant coffee disease in the world, while in 
monetary terms, coffee is the most important agricultural product in international trade. Therefore, even a very 
limited reduction in coffee yields or a modest increase in production costs caused by the rust has a great impact on 
coffee producers, related support services, and even banking systems in those countries the economies of which 
depend on coffee exports.  

2    http://www.fao.org/ag/LOCUSTS/en/activ/DLIS/satel/index.html.
3    http://www.siatma.org/.
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Figure 2. �Climatic conditions favourable to the development of coffee rust in 
Panama.

6.2.2. 	The phenology model for monitoring vegetation
Vegetation phenology (the study of recurring vegetation cycles and their connection to climate) is an important 
variable in a wide range of Earth and atmospheric science applications. In particular, as interest in global change 
research grows, accurate phenology models will become increasingly vital tools, as they enable researchers to 
monitor and predict vegetation responses to interannual climatic variability. Early in the history of satellite phenology 
research, Justice et al. (1985) used the Normalized Differenced Vegetation Index (NDVI) (see section 4.2 below) 
to qualitatively assess the global phenology of numerous land cover types. Goward et al. (1985) demonstrated that 
the NDVI corresponds to known seasonality in the continental United States of America. Satellites were later used 
to interpret phenology as an indicator of land cover changes in South America (Stone et al., 1994) and to detect 
phenological dynamics in shrublands (Duncan et al., 1993). Vrieling et al. (2011), focusing on the cumulated 
NDVI over the season (which is a proxy for net primary productivity), characterize the vegetation phenology for 
sub-Saharan Africa and assess the variability and trends of phenological indicators based on NDVI time series from 
1982 to 2006 (figure 3).

Figure 3. �Mean start of season (left); σt of SOS (middle; in days); and Spearman 
trend of SOS (right), based on AVHRR NDVI time series. The lower part 
shows the values for the second season for locations where a 
second season occurs.
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6.2.3. 	How early is “early” warning?
Figure 4 shows the current warning times for climatic hazards. It may be seen that EWS can provide seconds of 
available warning time for earthquakes, to months of warning for droughts, which are the quickest and slowest 
onset hazards, respectively. Specifically, EWS provide tens of seconds of warning for earthquakes, days to hours for 
volcanic eruptions, and hours for tsunamis. Tornado warnings provide minutes of lead-time for response. Hurricane 
warning time varies from weeks to hours. The warning time increases to years or even decades of lead-time available 
for slow-onset threats (El Niño, global warming, etc.). Drought warning time is in the range of months to weeks.

Slow-onset (or creeping) changes may cause serious problems to the environment and society, if preventive measures 
are not taken when necessary. Such creeping environmental changes require effective early warning technologies 
due to the high potential impact of incremental cumulative changes on society and the environment (UNEP, 2012).

Figure 4. �How early is “early” warning? The graph shows the timeliness of 
EWS for hydrometeorological hazards and the area of impact (by 
specifying the diameter of the spherical area) for different climatic 
hazards. Source: Golnaraghi, 2005. 
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6.3. Early Warning Early Action

The Red Cross (2008) defines Early Warning-Early Action (EWEA) as routinely taking humanitarian action before 
a disaster or health emergency occurs, making full use of scientific information on all timescales. It is much more 
effective to evacuate people before a flood than to rescue people during the flood, or to provide relief to its victims. 
It is also much more effective to support farmers in finding alternative livelihood options than to provide food aid 
when the harvest has failed. Remarkable advances in science and technology have enabled access to a wide range of 
EWS. General circulation models and satellite images, regional centres of expertise, national meteorological offices 
and other government agencies, local field reports and community observations all allow for a better comprehension 
of phenomena, and of their likely consequences. This, in turn, enables a much better anticipation of climate-
related threats. At the shortest timescales, warnings of impending storms can help communities to prepare and take 
immediate actions, such as evacuation, to reduce loss of life. At intermediate timescales, a seasonal forecast based 
on El Niño may indicate that the upcoming storm season may be particularly severe, or that a continuing drought 
may result in food scarcity. At the longest timescales, future climate change scenarios present an early warning of 
increasing hazards which, along with trends such as urbanization and population growth, provide a new analysis 
of risk.

At each end of this temporal scale, disaster risk is the interaction between hazards (cyclones, storms, droughts, etc.) 
and the vulnerability of communities. Both of these elements are constantly changing. Climate change causes the 
frequency, intensity and location of hazards to change. Phenomena such as urbanization, poverty, population growth 
and disease continuously alter the nature of vulnerability. Disaster risk reduction is not only an effort to produce 
detailed risk maps, but rather a means to continually understand the evolving nature of hazards and vulnerabilities 
and to take action against vulnerability and its underlying causes.

Early warnings are ineffectual without corresponding early action. Numerous examples illustrate how reliable 
information about expected threats was insufficiently acted upon to avert a disaster, including Cyclone Nargis, 
Hurricane Katrina, and the food crisis in Niger. At the shortest timescales, the action could be evacuation. On the 
longest timescales, early action means working closely with local communities to assess and address the root causes 
of the changing risks that they face. Constructing houses on stilts, planting trees against landslides, conducting 
dengue awareness and prevention campaigns, installing water catchment systems and millions of other risk reduction 
measures can be taken. Early action also includes updated contingency planning and volunteer mobilization. In terms 
of geographic range, early action can take various forms: if a large flood is expected, at the local scale, the most 
a community is to protect its main water well from contamination. At country level, a government may update its 
contingency plans. On a global scale, international institutions can mobilize human and financial resources ahead 
of the disaster to assist national societies in reducing the impact of such hazards and even preventing loss of life 
completely. The more action is taken in response to warnings on the longest timescales – by identifying communities 
at risk, investing in disaster risk reduction, and enhancing preparedness to respond – the more lives and livelihoods 
can be salvaged at the shortest timeframes when a flood does arrive. Similarly, better links to global and regional 
knowledge centres and standardized procedures to deliver information to the correct locations will facilitate more 
effective action at the local level.

A few hours in advance, it is usually possible to identify rather well where and when a large storm will hit. However, 
for such a warning to be actionable, an investment must be made well in advance to create a comprehensive 
emergency management system. With a warning period of a few days, a storm forecast leads to the possibility to 
take immediate disaster preparedness action – identifying evacuation routes, evacuation centres, protecting assets 
and mobilizing community organizers for immediate response. However, a longer-term warning (months or years 
in advance) of the changing nature of the storm risk makes it possible to expand disaster risk reduction actions, to 
include measures such as helping communities plant trees to stabilize hillsides, self-organizing to respond better 
to warnings, building storm-resistant houses or advocating for the construction of storm shelters. Awareness that a 
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risk is higher than normal demands a higher level of investment in preparing the capacity to take early actions that 
will be useful regardless of when and where disaster strikes. 

Using such risk information may also mean that “wrong” decisions may be made – for instance, when a forecast 
predicts an 80 percent likelihood that there will be hurricane-force winds in a certain time and place. While it is 
very likely to happen, there is no certainty. Indeed, in 20 percent of these cases, the predicted condition is actually 
expected to not happen. When promoting early action, such uncertainty should not be hidden: an honest description 
of what is and is not known about the future should be a key component of communication to all stakeholders, and 
an important consideration in how risks are assessed and addressed.

There is a need to transform scientific information – which is often complex and takes the form of maps or 
percentages – into simple and accessible messages that enable those at risk to make sensible decisions on how to 
respond to an impending threat. For instance, Rojas (2016) proposes using the Agricultural Stress Index System 
(ASIS) as a trigger to activate drought mitigation activities in agriculture (figure 5).

Figure 5.  �From the agricultural drought EWS to Early Action. The map 
illustrates the percentage of agricultural area affected by 
drought (Agroclimatic Information System, or ASI) in 2006.  

The bar graph links the ASI to the drought mitigation activities. Source: Rojas, O., 2016.
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Continuing advances in remote sensing technology, improvements in weather forecasting and 
meteorological models, new possibilities from information and communication technologies (ICT) 
and major opportunities to expand the coverage and capacity of EWS in vulnerable countries and 
regions point towards an ever-improving predictive capacity. There is much that governments, 
agencies and early warning providers can do to facilitate these advances. However, without 

Figure 54.  From the agricultural drought EWS to Early Action. The map illustrates the percentage 
of agricultural area affected by drought (Agroclimatic Information System, or ASI) in 2006. The 
bar graph links the ASI to the drought mitigation activities. Source: Rojas, O., 2016. 
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Continuing advances in remote sensing technology, improvements in weather forecasting and meteorological 
models, new possibilities from information and communication technologies (ICT) and major opportunities to 
expand the coverage and capacity of EWS in vulnerable countries and regions point towards an ever-improving 
predictive capacity. There is much that governments, agencies and early warning providers can do to facilitate these 
advances. However, without meaningful reforms in other areas, comparable improvements in early action will not 
follow (Bailey, 2013).

6.4. Crop yield forecasting

Forecasting is the foundation of all warning systems. It must be applied to the four areas of food security (availability, 
stability, access and biological utilization) to give decision-makers enough time to react to warnings, and with a 
sufficiently high degree of reliability (as a general rule, the more long-term the forecasts, the less reliable they are) 
to avoid false alarms from being raised. All forecasts have a probability rating (which may or may not be calculable), 
which is a good indicator of their reliability.

Basso et al. (2015) reviewed methods for crop yield forecasting, establishing that the process requires crop 
simulation models (CSMs). CSMs are computerized representations of crop growth, development and yield that 
are simulated through mathematical equations as functions of soil conditions, weather and management practices 
(Hoogenboom et al., 2004). CSMs are divided into statistical models, mechanistic models and functional models. 
Crop models are only an approximation of the real world, and many do not account for important factors such as 
weeds, diseases, insects, tillage and nutrients (Jones et al., 2001). Nevertheless, CSMs have played important roles in 
the interpretation of agronomic results, and their application as decision support systems for farmers is increasingly 
common. Models range from simple to complex. Simple models are often used for yield estimation across large 
land areas based on statistical information related to climate and historical yields, and include little detail about the 
soil-plant-system. Most simple models are used in National Early Warning Systems (NEWS).  

Analysis of meteorological and climatic data allows providing near real-time information about the crop state, in 
quality and quantity, with the possibility of early warning on alarm/alert situations so that timely interventions can 
be planned and undertaken (Gommes et al., 2006). Crop forecasting philosophy is based on various types of data that 
are collected from different sources: meteorological data, agrometeorological (phenology, yield) data, soil (water 
holding capacity) data, remotely sensed data and agricultural statistics. Based on meteorological and agronomic 
data, several indices are derived which are deemed to be relevant variables in determining crop yield, such as crop 
water satisfaction, surplus and excess moisture, average soil moisture, etc.

The outputs are empirically related to crop yield through standard regression techniques. This procedure is known 
as “model calibration”. The result of the calibration is a mathematical expression – known as “yield function” – that 
is used to calculate yield estimates on the basis of model outputs. Available crop statistics at administrative level 
are used to calibrate the regression models; therefore, the latter’s ultimate accuracy depends, to a great extent, on 
the quality of those input statistics. 

As noted by Pulwarty (2007), the timing and form of climatic information input (including forecasts and projections), 
and access to trusted guidance and capability to interpret and implement information and projections in decision-
making processes, are as important to individual users as are improvements in prediction skill.
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6.4.1. 	The agrometeorological model
Agricultural statistics show an interannual variability of crop yields due to three sources:  (a) trends; (b) direct 
weather factors; and (c) indirect effects of the weather, pests, diseases, weed competition, etc. However, it must 
also be considered that the spatial variability of crop yield is dominated by soil fertility. The issue of the impact of 
the weather on food availability is further complicated by the fact that the weather plays a part at several levels of 
the food chain (Gommes, 2002). The relative importance of the listed sources of the variability of food production 
depends largely on the general socio-economic setting. In many developing countries, the technology component 
is not particularly marked, and some of the poorest countries may show no yield trend at all. This is a situation 
where the impact of weather can have dramatic conditions and threaten the food security of millions of people. 
When the same farmers are gradually forced by circumstances to adapt to more commercial farming, they will 
experience a transition phase, during which their vulnerability to weather vagaries will increase. In countries where 
the agricultural sector is more advanced (because of mechanization, irrigation, improved varieties, advanced on-farm 
decision-making, etc.), the trend accounts for a large proportion of yield variability (over 80 percent). If the trend is 
removed from the time series, it can therefore be assumed that the largest proportion of the residual variability is due 
to weather. Balaghi et al. (2013) propose a crop yield function based on meteorological data (rainfall), which is used 
as an explicative variable of crop yield variation in Morocco (figure 6). The authors consider that the slope of the 
regression line represents Rain Water Productivity (RWP, g/l), defined as the ratio of yield (kg/ha) to the cumulated 
rainfall (mm) during the cropping season (September to April). In semi-arid regions, a single meteorological variable 
such as rainfall is capable of explaining most of the crop yield variation; however, in tropical countries, an integration 
of other meteorological and soil moisture content should be performed. To forecast rice yield in Bangladesh, 
Gommes (2001) uses a simple water model and principal component analysis to identify actual evapotranspiration 
(ETA) and maximum temperature in August (Tx8) as independent variables (figure 7).   

Figure 6. �Country-level relationship between durum wheat (kg/ha) and 
rainfall during the cropping season (mm) (data from 1988 to 2011).    

The slope of the blue regression line represents the RWP of soft wheat in Morocco, which is 0.346 g/l. The slope of the red regression line 
denotes the maximum RWP that is manageable in optimum conditions (0.653 g/l).  
Source: Balaghi et al., 2013.
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Figure 7. �Relationship between observed and calculated yield for high rice 
varieties in Rajshahi, Bangladesh (1983-1998).     

The regression model is based on actual evapotranspiration (ETA) and maximum temperature in August (Tx8).  
Source: Gommes, 2001.

Most authors relate the weather variables to explain crop yield variation; however, if the area planted is kept 
relatively constant in a specific country, the weather could directly explain any fluctuations in production.   

The European Commission’s Joint Research Centre (JRC) provides near-real-time crop growth monitoring and yield 
forecasting information for the European Union (EU) and neighbouring countries, and is extending these activities 
to the main producing regions of the world. It also assesses the impact of climate change on agriculture through the 
simulation of the impact of different climate change scenarios in crop models. The JRC constitute an example of 
the operational use of complex crop models; to simulate the impact of climate change on agriculture and to evaluate 
potential adaptation strategies, the JRC uses its Biophysical Models Applications (BioMA) framework. A suite of 
model components implemented in this modelling framework help to carry out simulations of various crops in 
agricultural systems under present and future climate change scenarios. 

Since 2012–2013, Statistics Canada has been collaborating with Agriculture and Agri-Food Canada (AAFC) 
and Environment Canada (EC) on a model that can derive crop yield estimates for the principal crops grown in 
Canada. Statistics Canada recognized the opportunity to make new estimates available with these modelled yields. 
These estimates could eventually replace collected data and reduce the response burden on crop producers4. The 
model utilizes data from low-resolution satellite imagery, historical field crop survey estimates, and agroclimatic 
information.

In Australia, Potgieter et al. (2014) propose a methodology that uses remote sensing information to predict aggregated 
field scale wheat yields (with a deviation of approximately 2.6 percent) (figure 8). The results of the first application 
in the country could be used by the insurance industry.

4    http://www.23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5225.
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Figure 8. Simulated long-term median of shire wheat yield (1901–2015).     

Source: Potgieter et al., 2014.

Crop yield forecasting provides the opportunity to prepare for the consequences of shortages in production by taking 
action to reduce vulnerability to climatic risks. Therefore, it is a valuable tool for decision-making in agriculture, 
enabling the planning in advance of actions as aids to agricultural insurance company (Balaghi et al., 2013).  

6.4.2. 	The remote sensing model
Remote sensing is the science of acquiring information about an object through the analysis of data obtained by a 
device that is not in contact with that object (Lillesand and Keifer, 1994). Such data can be obtained from a variety 
of platforms, such as satellites, airplanes, unmanned aerial vehicles (UAVs), and handheld radiometers. They may 
be gathered by different devices, for example sensors, film cameras, digital cameras and video recorders. The 
instruments used for measuring electromagnetic radiation are called sensors. Sensors are passive when they do not 
have their own source of radiation and are sensitive only to radiation from a natural origin; they are active when 
they have a built-in source of radiation. 

Field studies and airborne scanner experiments (Tucker, 1979) demonstrate that the spectral reflectance properties 
of vegetation canopies, and in particular combinations of red and near infrared (NIR) reflectance (also called 
“vegetation indices” or VIs), are useful for monitoring green vegetation. Vegetation indices are mathematical 
combinations or ratios of mainly red, green and infrared spectral bands, designed to identify functional relationships 
between crop characteristics and remote sensing observations (Wiegand et al., 1990). Vegetation indices are strongly 
modulated by the interaction of solar radiation with crop photosynthesis and are thus indicative of the dynamics of 
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biophysical properties related to crop status. Box 2 notes the most commonly used vegetation indices for vegetation 
monitoring. One of the different VIs based on these two spectral channels, is the NDVI. The NDVI was proposed 
by Deering (1978), and remains the most popular indicator for studying vegetation health and crop production 
(MacDonald and Hall, 1980; Sellers, 1985). Research in vegetation monitoring has shown that the NDVI is closely 
related to the Leaf Area Index (LAI) and to the photosynthetic activity of green vegetation. The NDVI is an indirect 
measure of primary productivity through its almost linear relation with the Fraction of Absorbed Photosynthetically 
Active Radiation (fAPAR) (Los, 1998; Prince, 1990). The NDVI does present certain well-known limitations, 
such as the effects of soil humidity and surface anisotropy. Composite products used in most applications tend 
to limit these effects; however, they cannot be completely ignored. Rojas (2007) proposes a yield function based 
on remote sensing and agrometeorological data for forecast maize yield in Kenya. The model’s NDVI and ETA 
explain 79 percent of the maize crop yield variance, with a root square mean error (RMSE) of 0.3766 t/ha (figure 
9). The agrometeorological models display information on solar radiation, temperature, air humidity and soil water 
availability, while the spectral component contains information about crop management, varieties, and stresses that 
were not taken into consideration by the agrometeorological models (Rudorff and Batista, 1990).

Figure 9. Relationship between observed and estimated maize yield in Kenya.       

Regression model based on ETA and NDVI data for years from 1985 to 2003. 
Source: Rojas, 2007. 

To detect agricultural areas with a high likelihood of water stress (drought) at the global level, FAO has developed the 
Agriculture Stress Index System (ASIS). ASIS uses the Vegetation Health Index (VHI), a composite index joining the 
Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI). The VCI (Kogan, 1994) is derived 
from the NDVI. The TCI algorithm is similar to the VCI, but relates to the brightness temperature T estimated from 
the AVHRR’s thermal infrared band (channel 4). Kogan (1995) proposed this index to remove the effects of cloud 
contamination in the satellite assessment of vegetation condition because the AVHRR channel 4 is less sensitive to 
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water vapour in the atmosphere than the visible light channels. High mid-season temperatures indicate unfavourable 
or drought conditions, while low temperatures indicate mostly favourable conditions (Kogan, 1995).

The first step in ASIS is to elaborate a temporal average of the VHI, to assess the intensity and duration of the 
dry period(s) occurring during the crop cycle at pixel level. ASIS is based on ten-day (dekadal) satellite data of 
vegetation and land surface temperature from the METOP-AVHRR sensor at a resolution of 1 km. 

The second step is to calculate the percentage of agricultural area affected by drought (pixels with a VHI lower 
than 35 – a value identified as critical in previous studies) to assess the extent of the drought. Finally, the entire 
administrative area is classified according to the percentage of area affected. ASIS assesses the severity (intensity, 
duration and spatial extent) of the agricultural drought and indicates the final results at administrative level, given 
the possibility to compare it with the agricultural statistics of the country (Rojas et al., 2011; Van Hoolst et al., 
2016). Rojas (2016) proposes a yield function based on the Agricultural Stress Index (ASI) and wheat yield in 
Syria (figure 10). 

Figure 10.  �Relationship between Agricultural Stress Index (ASI) and wheat 
yield in Syria (1985-2012).         

Source: FAO, GIEWS 

India’s Mahalanobis National Crop Forecast Centre (MNCFC) combines agrometeorological models with remote 
sensing data to provide multiple preharvest production forecasts of crops at national, state and district levels5. The 
MNCFC releases six production forecasts during the crop cycle:  Pre-season, Early-season, Mid-season, Pre-Harvest 
(state level), Pre-Harvest (district level) and a Revised Assessing Damage. The MNCFC uses conventional tools, 
such as econometry and agrometeorology during pre- and early-season forecasts, medium- to high-resolution remote 
sensing products during mid-season forecasts and high-resolution imagery during preharvest at district level. Another 
of the strengths of this approach lies in the remote-sensing-driven crop cutting experiments (CCEs) that the MNCFC 
conducts every crop season to train the different agrometeorological models and remote sensing products.

5    http://www.nrsc.gov.in/Agriculture.
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Brown et al. (2009) suggest the crop yield forecasting model as a methodology to forecast the price of food 
staples using NDVI information. They use the NDVI as a proxy for local millet supply in the model, for which 
no appropriate market-level data is available. Linking the NDVI with information on the planted area is likely 
to increase the predictive power of the NDVI; however, regrettably, comprehensive information on the area in 
cultivation is not readily available at local level in West Africa. The model accounts for 85 to 90 percent of the 
observed price variation, and the error of the four-month-ahead forecast is in the range of 13.4 percent (Niger) to 
19.5 percent (Burkina Faso) on average using in-sample observations, or 18.8 percent (Burkina Faso) to 21.9 percent 
(Mali) on average using out-of-sample observations. Figure 11 shows an example of the relationship between millet 
production, the NDVI, actual millet prices and predictions.

Figure 11.  �Left: relationship between the NDVI and millet production in Burkina 
Faso in the years from 1982 to 2006.  
Right: Average prices and four-month predictions for Burkina Faso.          

Source:  Brown et al., 2009. 

Finally, using a general circulation model (GCM), Hansen et al. (2004) forecast regional wheat yields in northeast 
Australia. The model’s prediction accuracy was generally better at state level than at the smaller district level. 
Although the wheat simulation model accounted for approximately 75 percent of the variance of de-trended state 
average wheat yields, correlations for individual districts were generally lower, accounting for an average of 58 
percent of the variance weighted by the area under wheat in each district.  The authors compared the results of the 
GCM model with predictions based on climatology alone, phases of the El Niño-Southern Oscillation (ENSO) and 
phases of the Southern Oscillation Index (SOI). Figure 12 shows a correlation between the district wheat yields 
observed in Queensland and GCM-based wheat hindcasts.
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Figure 12. �Correlation between observed district wheat yields in Queensland 
and GCM-based wheat hindcasts captured on (a) 1 May (b) 1 June, 
(c) 1 July and (d) 1 August, from 1975 to 1993, adjusted to the 2001 
technological trend.           

Source: Hansen et al., 2004.
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United States Department of Agriculture’s National Agricultural Statistics Service (USDA/NASS) has researched 
and used remote sensing technology for acreage estimation since the early 1970s. Significant advancements in 
recent years have enabled NASS to transition the use of remote sensing, from serving primarily a research function 
to performing an integral role in the agency’s crop acreage estimation programme, covering all major crops grown 
in high-producing states in the United States of America. This accomplishment was largely achieved pursuant to 
(1) enhanced data partnerships; (2) improved methodologies; (3) increased availability of commercial software;, 
and (4) improved imagery and ancillary data. With acreage estimation now operational, the USDA is focusing its 
efforts to transition yield estimation too from the research to the operational context. Currently, corn and soybean 
yield estimates for ten major producing states are provided in-season to the Agricultural Statistic Board (ASB) and to 
NASS field offices. Although the yield estimates are currently solid, additional experience and research are expected 
to bring further improvements. Looking to the future, NASS has begun conducting research to quantitatively 
measure crop progress and condition using remote sensing and intends to expand the use of remote sensing into the 
mapping of soil moisture and improving of disaster assessments and monitoring.

6.5. Conclusion

This chapter has reviewed the concept and importance of the EWS, mainly supporting food security and nutrition 
aspects. The main conclusion is that to be effective, any EWS should be within the framework of national mitigation 
plans for disaster risk reduction of the hazard(s) monitored. Warnings of any hazard risk can help communities to 
prepare and take immediate action; however, the alert cannot, in itself, mitigate the potential impact of the eventual 
disaster. Consequently, the concept of Early Warning-Early Action was introduced, as highly relevant philosophy 
that governments and society should implement to defend communities, save lives and protect assets. In terms 
of agricultural production (mainly evaluating the availability of the four areas of food security, but indirectly 
affecting other two through the impact of local markets: stability and access), crop yield forecasting techniques 
may be of assistance by providing the opportunity to prepare for the consequences of any shortage in production 
by taking action to reduce vulnerability to climatic risks. A variety of models,  with different level of complexity, 
are proposed to estimate crop yields at regional level, from simple regression between climate variables to more 
elaborate yield functions, introducing remote sensing products and general circulation models. The model selected 
depends on the data access and quality available in individual countries and the ultimate purpose of the forecasting. 
Currently, remote sensing performs a central role within statistical programs in the estimation of crop area and yields. 
Advances in imagery and Information Technology (IT) capabilities have enabled remote sensing to transition from a 
research effort to a production process. Future developments are expected to include a more rapid advance of remote 
sensing applications from research to operational status and to achieve benefits with reduced respondent burden, 
the expansion of additional spatially rich data, and savings from data collections in traditional surveys having the 
ultimate purpose of improving agricultural statistics. 
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BOX 3. Historical background to food security information systems. 

•	 Until the 19th century, population fluctuations were linked to three main factors (war, famine and 

epidemics) and were often correlated with fluctuations in food production. Commercial and industrial 

development gradually modified this tendency in industrialized countries, as people became less 

dependent on subsistence farming. Until then, population monitoring gave an idea (ex post) of food 

insecurity.

•	 Until the beginning of the 20th century, subsistence farming remained the principal source of food in 

countries that were not industrialized. The successive waves of colonization and decolonization of the 

poorest countries were based on policies of food self-sufficiency, to preserve political independence. The 

food monitoring systems of the time were based mainly on knowledge of basic agricultural production.

•	 The major food crises that occurred in the 1970s illustrated the importance of world public opinion and 

of the need to inform the public at large of food crises. The nutritional monitoring of young children was 

developed during this time, as the basis for gathering information on, and providing assistance to, the 

most needy.

•	 At the World Food Conference held in 1974 in Rome, over one hundred countries adopted the Universal 

Declaration on the Eradication of hunger and malnutrition. At this time, analyses of the causes of hunger 

abounded and the modern notion of “food security” was developed with the creation, in 1975, of the 

World Food Security Committee (FSC). Although governments were urged to introduce “national food 

policies”, the results were poor. Emphasis was placed on seeking to balance the supply and demand of 

staple foods. During this period, food-supply monitoring systems were gradually developed.

•	 Public marketing offices (for cereals in particular) were given powers to supervise these supplies in 

many countries, and efforts were made to create national or regional food security stocks (particularly 

in dry areas) to be used in the event of food crises. In this setting, information regarding production, 

national supplies, stocks and imports could theoretically be controlled by the same national body.

•	 Statistical systems and national accounts have recorded ever-increasing demands for information, 

especially in planning and economic monitoring. Statistical systems have tended to be highly 

compartmentalized (whether entrusted to a ministry or to a separate national body) and geared to 

their own internal requirements. Therefore, the information supplied has not been particularly useful 

for monitoring food security (for example, the statistics may be unreliable or that take a long time 

to be published; otherwise, the areas covered may be incompatible, making it difficult to compare 

data gathered from different systems). Some development partners have thus preferred to establish 

– in sub-Saharan Africa especially – parallel information systems that they finance and supervise 

themselves, and that provide the information they need to target their food security aid and assistance.

•	 Subsequently, structural adjustments and privatization radically changed the economies of developing 

countries and their trajectories, having major repercussions on food security. Donors decided to 

combine their economic aid with targeted interventionist policies to avoid major food or social crises. It 

became apparent that the problem of access to staple foods (poverty) would have to be examined more 

closely and that specific information was required to organize social aid.

•	 The diminishing world grain surplus and some negative experiences with large-scale distribution led the 

international community to reduce aid and question its use: when unsuitable or mismanaged, such aid 

could have a negative effect on food security. The existing information systems were then redirected to 

better target and monitor the distribution of aid. The development and use of satellite images offered a 

way to estimate the vegetation in each country, especially for rain-fed crops. This made information on 

global production available to the major donors.

 
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

•	 The globalization of trade is now linked to the fast pace of modern communication (possible through 

Internet, fax, satellite telephone, etc.) and management (computer) systems. Today, it is much easier to 

manage databases, make forecast and disseminate results. Food security monitoring and forecasting 

systems have become – at least in theory – easy to manage in national contexts, and donors support 

the training of managers to use these modern tools and media.

•	 The speed at which developing countries undergo urbanization also has an effect on food security 

data, in that it becomes essential to monitor food security and vulnerable groups at urban and rural 

levels.

•	 Parallel to the development of faster information channels, it has become necessary to introduce 

decentralized decision-making and widen the area of concerted action to include the various actors 

in food security (public, private and civil society). Food security information systems have gradually 

become centres for the exchange of information at all levels throughout the country.

•	 The need to reduce the number of undernourished people has indicated the need for decentralization 

and concerted action among all the actors in food security. This requirement was clearly noted by all 

participants in the World Food Summit held in November 1996, at which government representatives 

decided to take all necessary measures to reduce by half the number of undernourished people 

(estimated at 800 million at the time) by 2015. Since then, efforts have been made to complete 

information system databases by developing concrete indicators for monitoring the undernourished.

•	 Most recently, on 25 September 2015, countries adopted a set of goals to end poverty, protect the 

planet and ensure prosperity for all as part of a new sustainable development agenda. Each goal 

has specific targets to be achieved over the next 15 years. The proposal contained 17 goals with 169 

targets, covering a broad range of sustainable development issues. These included ending poverty 

and hunger, improving health and education, making cities more sustainable, combating climate 

change, and protecting oceans and forests. 
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TABLE 1. �List of the common VIs, mathematical formulae, scale of their development and parameter they estimate.

Index Formula Reference Scale Parameter

NDVI )Re(
)Re(

dNIR
dNIR




Rouse et al., 1974 Canopy Biomass; Vegetation fraction

Green Normalized Difference Vegetation Index 
(GNDVI) )(

)(
GreenNIR
GreenNIR




Gitelson et al., 1996 Canopy
Chlorophyll; Vegetation 
rraction

Photochemical Reflectance Index (PRI) )531570(
)531570(

RR
RR




Gamon et al., 1992 Canopy
Photosynthesis efficiency/ 
RUE

Normalized Difference Red Edge (NDRE) )720790(
)720790(

RR
RR




Barnes et al., 2000 Canopy Chlorophyll/nitrogen

Canopy Chlorophyll Content Index (CCCI)
)(

)(

minmax

min

NDRENDRE
NDRENDRE



Fitzgerald et al., 2006 Canopy N Status/chlorophyll

Ratio Vegetation Index (RVI)
d

NIR
Re

Jordan, 1969 Leaf Biomass

Enhanced Vegetation Index (EVI) )*2Re*1(
)Re(

*5.2
LBlueCdCNIR

dNIR




  
 1;5.72;61  LCC

Huete et al., 2002
Canopy/ 
regional

Biomass/vegetation cover

Enhanced Vegetation Index 2 EVI 2) 1Re*5.76

Re*








 



d
c

NIR

dNIRG

       )(
*Re

cfG
Bluecd



 Jiang et al., 2008
Canopy/ 
regional

Biomass/vegetation cover

Visible Atmospherically Resistant Index 
(VARIgreen) )Re(

)Re(
BluedGreen

dGreen



Gitelson et al., 2002

Canopy/ 
regional

Vegetation fraction/LAI

Visible Atmospherically Resistant Index; 700 nm 
(VARI700) )*3.1Re*3.2700(

)*7.0Re*7.1700(
BluedR
BluedR




Gitelson et al., 2002
Canopy/ 
regional

Vegetation fraction/LAI

Triangular Vegetation Index (TVI)  )550670(200)550750(1205.0 RRRR  Brodge and Leblanc, 2000 Canopy Chlorophyll

Modified Triangular Vegetation Index 1 (MTVI 1()  )550670(*5.2)550800(*2.1*2.1 RRRR  Haboudane et al., 2004 Canopy Chlorophyll

Modified Triangular Vegetation Index 2 (MTVI 2)
 

5.0)670*5800*6()1800*2(

)550670(*5.2)550800(*2.1*5.1
2 



RRR

RRRR
Haboudane et al., 2004 Canopy Chlorophyll
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180 Index Formula Reference Scale Parameter

MERIS Terrestrial Chlorophyll Index (MTCI) 
25.68175.708
75.70875.735

RR
RR




Dash and Curran, 2007 Canopy Chlorophyll

Chlorophyll Absorption Reflectance (CAR)
 

 1

670670*
2 



a

bRa

      













)550*(550
150/)550700(

aRb
RRa Kim et al., 1994 Canopy Chlorophyll

Chlorophyll Absorption Reflectance Index (CARI)
 

  670
700*

1

670670*
2 R

R
a

bRa




Kim et al., 1994 Canopy Chlorophyll

Modified Chlorophyll Absorption Reflectance 
Index (MCARI)

  
670
700*)550700(*2.0670700

R
RRRRR  Daugthry et al., 2000 Leaf/ canopy

Chlorophyll/LAI/soil 
reflectance

MCARI 1  )550800(*3.1)670800(*5.2*2.1 RRRR  Haboudane et al., 2004 Canopy
Chlorophyll/LAI/soil 
reflectance 

MCARI 2
 

  5.0680*5800*6)1800*2(

)550800(*3.1)670800(*5.2*5.1
2 



RRR

RRRR
Haboudane et al., 2004 Canopy

Chlorophyll/LAI/soil 
reflectance

Transformed Chlorophyll Absorption Reflectance 
Index (TCARI)

 )670/700(*)550700(*2.0)700700(*3 RRRRRR  Haboudane et al., 2002 Canopy
Chlorophyll/LAI/soil 
reflectance

Weighted Difference Vegetation Index (WDVI) daNIR Re Clevers, 1989 Canopy LAI/biophysical parameters

Perpendicular Vegetation Index (PVI)
)Re(1

1
2 bdaNIRa 

Richardson and Wiegand, 
1977

Canopy
Canopy biophysical 
parameters

Soil-Adjusted Vegetation Index (SAVI)
LRR

RRLa





)670800(
)670800(*)1(

Huete et al., 1988 Canopy
Canopy biophysical 
parameters

Transformed Soil-Adjusted Vegetation Index 
(TSAVI) ]670800[

)670800(
baRRa
bRaRa cb




Baret et al., 1989 Canopy
Canopy biophysical 
parameters

Optimized Soil-Adjusted Vegetation Index (OSAVI) )16.0Re(
)Re(*)16.01(




dNIR
dNIR

Rondeaux et al., 1996 Canopy
Canopy biophysical 
parameters

Modified Soil-Adjusted Vegetation Index (MSAVI)
Vegetation Health Index (VHI) 

)670800(
)670800(*)1(

LRR
RRLe




VHI= a*VCI + b*TCI

Qi et al., 1994
Kogan, 1995

Canopy
Canopy

Canopy biophysical 
parameters
Biomass, biophysical 
parameters

a L is a soil-adjustment factor and is set at 0.5.                                                                              
b and c  a and b are soil-line coefficients derived from the following equation: NIRsoil= a * REDsoil + b.
d χ is an adjustment factor for minimizing the soil background effects. It is set at 0.08.
e L is a self-adjustment factor derived from the following equation: L= 1 – 2*a*NDVI*WDVI.
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Chapter 7

Monitoring forest cover and 
deforestation
Frédéric Achard, Yeda Maria Malheiros de Oliveira and Danilo Mollicone

7.1. Introduction and main objectives 

Forests provide a range of goods and services that benefit peoples’ livelihoods and wellbeing and that play an 
important role in economies around the world. It is widely acknowledged that reliable and timely information 
on forest resources are essential to assess the full benefits of forests, as well as facilitate governments and other 
stakeholders in assessing and monitoring the effectiveness of policies and programs related to forestry and other 
land uses (MacDicken, 2015).

Moreover, global demand for agricultural products such as food, feed, and fuel is a major driver of cropland and 
pasture expansion across much of the developing world (DeFries et al., 2010). Whether these new agricultural lands 
replace forests, degraded forests, or grasslands greatly influences the environmental consequences of expansion. 
Across the tropics, between 1980 and 2000, over 55 percent of new agricultural land was obtained at the expense 
of intact forests, and another 28 percent of disturbed forests (Gibbs et al., 2010). Recently, deforestation driven by 
commercial cropland has significantly increased, with hotspots occurring in South America (de Sy et al., 2015).

Poor information and statistics on forest resources may lead to insufficient or inaccurate knowledge of the country’s 
forest resource utilization, impede successful planning and policy decisions regarding forestry and other land uses, 
mislead donors in identifying targeted priorities and projects, and hinder proper assessment of the progress being 
made towards Sustainable Forest Management (MacDicken et al., 2015) and other development goals. 

The Reduction of Emissions from Deforestation and forest Degradation (REDD+) activities held under the United 
Nations Framework Convention on Climate Change (UNFCCC) are expected to offer results-based payments to 
developing countries for reducing greenhouse gas emissions from forested lands (UNFCCC, 2014). It is necessary 

7
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to determine reference data on forest carbon losses against which future rates of change can be evaluated, and to 
establish reliable methods for monitoring, reporting and verifying such changes. Most developing countries must 
yet develop forest monitoring systems at national level in the framework of REDD+. 

Although some national agencies (in particular, those of Brazil, India and Mexico) are making great progress at 
country level from, in the past, several tropical countries had limited capacity to implement such monitoring systems. 
Capacity-building efforts are now being made to strengthen the technical skillsets necessary to implement national 
forest monitoring at institutional levels (Romijn et al., 2015). It is highly desirable to help developing countries to 
foster and enhance their own statistical capacity to produce statistics on forest resources. 

The last few decades have seen great progress in producing and disseminating information on global forest cover 
resources among major international agencies such as the Food and Agriculture Organization of the United Nations 
(FAO; see FAO, 2015a) or the World Resources Institute. Robust examples advancing such approaches, applied 
on the full tropical belt, and examples of good practices adopted at national scale are also included in this review. 

Advances in measuring approaches and techniques based on satellite remote sensing are of tremendous interest 
(Achard and Hansen, 2012). Data and methods are no longer an obstacle to the implementation of REDD+ within the 
Paris Agreement (UNFCCC, 2016). Moreover, the global community of Earth Observation and carbon experts have 
prepared technical guidelines on methodological issues relating to the integration of remote sensing and ground-
based observations to estimate emissions and removals of greenhouse gases in forests: the GOFC-GOLD REDD 
sourcebook (GOFC-GOLD, 2016), and the GFOI Methods and Guidance Documentation (GFOI, 2014). These 
guidelines are intended to be instruments to assist countries in identifying data gaps in their national forest inventory 
systems and to provide operational guidance on developing national forest monitoring systems. Countries are 
encouraged to incorporate the international standards into their forest monitoring program to promote international 
comparability. 

Improvements in national monitoring capacities to produce forest area estimates ultimately benefit policy-makers, 
economic entities and the livelihoods of forest-dependent people, enhancing the availability and quality of data on 
forest resources, and thus ensuring better policy and investment decisions. 

The purpose of this chapter is to provide guidelines on the use of remote sensing for forest cover statistics and to 
present the existing approaches to the use of remote sensing for assessing forest cover and evolution, from global 
to national scales. This review seeks to support the development of national REDD+ interventions and forest 
monitoring systems.

7.2. �The use of remote sensing to monitor forest cover – 
background information

Technically, it became possible to rely upon remote sensing imagery to monitor forest area change from the 1990s. 
The feasibility and accuracy of such monitoring depends largely upon national circumstances (in particular, with 
regard to data availability); that is, potential limitations relate more to definitions, resources and data availability 
than to methodologies (GOFC-GOLD, 2016).
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7.2.1. 	 Definition of forests, deforestation and degradation
Several terms, definitions and other elements relevant to REDD+ activities are not formally established (including 
terms such as “deforestation” and “forest degradation”). As decisions regarding REDD+ are based on the current 
modalities prescribed by the UNFCCC and the Kyoto Protocol, the definitions provided in those two documents 
will be used in this chapter, and are set out below (see GOFC-GOLD, 2016, for further details).

Forest land – Under the UNFCCC, forest land includes all land with woody vegetation consistent with thresholds 
used to define forest land in the national greenhouse gas inventory. It also includes systems with a vegetation 
structure that does not, but that in situ could potentially reach, the threshold values used by a country to define the 
forest land category. Moreover, the presence of other uses that may be predominant should be taken into account.

Estimations of deforestation are affected by the definitions of ‘forest’ versus ‘non-forest’ land, as these may 
vary widely in terms of tree size, area and canopy density. There are myriad definitions of forest. However, most 
definitions share certain threshold parameters, including for the minimum area, minimum height and minimum level 
of crown cover. In its 2015 forest resource assessment, FAO (FAO, 2015a) uses a minimum cover of 10 percent, a 
minimum height of 5 m and a minimum area of 0.5 ha, adding that forest use should be the predominant use. Most 
remote sensing studies, on the other hand, use a land cover definition (Magdon et al., 2014), because land use cannot 
be determined by remote sensing alone.

For the purposes of the Kyoto Protocol, parties select a single value for crown area, tree height and area to define 
forests within their national boundaries (UNFCCC, 2006). The selection is made from within the following ranges, 
with the understanding that young stands that have not yet reached the necessary cover or height are included as forest:
•	 Minimum forest area: 0.05 to 1 ha
•	 Potential to reach a minimum height at maturity in situ of 2 to 5 m
•	 Minimum tree crown cover (or equivalent stocking level): 10 to 30 percent

The definition of forest allows some flexibility to countries when designing a monitoring plan, because the analysis of 
remote sensing data can adapt to different minimum tree crown cover and minimum forest area thresholds. However, 
consistency in forest classifications for all REDD+ activities is critical for integrating different types of information, 
including remote sensing analysis. The use of different definitions affects the technical requirements for Earth 
Observation and may influence cost, availability of data, and the ability to integrate and compare data through time.

Deforestation – Most definitions characterize deforestation as the long-term or permanent conversion of land from 
forest use to other non-forest uses. Under Decision 16/CMP.1, the UNFCCC defined deforestation as: “the direct, 
human-induced conversion of forested land to non-forested land.” (UNFCCC, 2006).

In practical terms, this definition entails a reduction in crown cover from above to below the threshold for the forest 
definition. Deforestation causes a change in land use, usually in land cover. Common changes include conversion 
of forests to annual cropland, to pasturelands, to perennial plants (such as oil palm or shrubs), and to urban lands 
or other human infrastructure.

Forest degradation – Forest degradation occurs due to various processes, including unsustainable logging, shifting 
cultivation, firewood collection or burning. It leads to a reduction of biomass, opening of forest canopies and changes 
in the structure of forests. It also modifies species composition, thus affecting ecosystem services, including future 
potential for carbon capture and storage.

A report authored by the Intergovernmental Panel on Climate Change (IPCC, 2003) presents five different 
potential definitions for degradation, along with their respective pros and cons. The report suggested the following 
characterization for degradation:
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“A direct, human-induced, long-term loss (persisting for X years or more) or at least Y percent of forest carbon 
stocks [and forest values] since time T and not qualifying as deforestation”.

In practice, it is likely to be difficult to agree upon the values for X, Y and T. Therefore, it is also possible that 
no specific definition is necessary, and that any “degradation of forest” will be reported simply as a net decrease 
of carbon stock in the category of “Forest land remaining forest land” at national or subnational level. The GFOI 
Methods and Guidance Document (GFOI, 2014) does not attempt to formally to define degradation, although it 
does set out steps for estimating degradation using IPCC methods. 

7.2.2. 	S pecifications for monitoring deforestation from remote sensing
Tropical forest mapping and monitoring is a key application domain for Earth Observation (EO) because of the 
need for recurrent and frequent data to produce annual information on forest cover in humid and seasonal domains, 
and regular information on forest disturbance processes. It benefits from long-term consistent archives of Landsat 
imagery for forest area change, for instance supporting various mature and operational applications such as the 
Global Forest Watch (GFW) platform1 of the World Resources Institute and the PRODES project2 of the Brazilian 
National Space Agency. Previous attempts to integrate moderate to fine-resolution EO imagery into operational 
forest degradation mapping and monitoring have largely failed because of inadequate technical parameters, high 
costs and uncertain long-term prospects. Currently, the EO community mostly uses Landsat sensors (30 m), with 
products having global coverage and an annual frequency. Today, the use of such imagery (approximately 30 m) 
leads mainly to the creation of tree cover percentages or forest/non-forest binary maps, which are released at yearly 
intervals (Hansen et al., 2013). 

The remote sensing techniques to monitor changes in forest areas (e.g. deforestation) provide high-accuracy area 
estimates and may also allow for the spatial mapping of the main forest ecosystems (GOFC-GOLD, 2016). As 
a minimum requirement, it is recommended to use Landsat-type remote sensing data (30-m resolution) or finer-
resolution imagery (e.g. Sentinel-2 data at 10 m resolution) to monitor forest cover changes, with the Minimum 
Mapping Unit (MMU) measuring between 1 to 5 ha. These data will allow to assess changes in forest areas (in 
particular, to derive the area deforested and forest regrowth for the period considered). A hybrid approach combining 
automated digital segmentation and classification techniques with visual interpretation and/or validation of the 
resulting classes/polygons should be preferred, as this constitutes a simple, robust and cost-effective method.

Different spatial units may be used to detect forest and forest change. Current national and regional remote sensing 
monitoring systems provide several examples of MMU: Brazil’s PRODES system3 for monitoring deforestation 
in the Brazilian Legal Amazon region (initially 6.25 ha, today 1 ha for digital processing); India’s national forest 
monitoring system (1 ha); the EU-wide CORINE land cover/land use change monitoring system (5 ha); the Peruvian 
Ministry of Environment’s deforestation monitoring programme (0.1 ha); and the Global Forest Watch deforestation 
monitoring system (0.1 ha).

Currently, there are two main sources of free global mid-resolution (30 m × 30 m to 10 m × 10 m) remote sensing 
imagery: NASA (Landsat satellites), for data acquired since the early 1980s; and the European Space Agency, or 
ESA (Sentinel satellites, through Copernicus programme) for data acquired since the mid-2010s, although some 
quality issues arise with respect to certain parts of the tropics (resulting from clouds, seasonality, etc.). All Landsat 

1    http://www.globalforestwatch.org/.
2    http://www.obt.inpe.br/prodes/index.php.
3   � The PRODES project of the Brazilian Space Agency (INPE) has been producing annual rates of gross deforestation since 1988. PRODES 

has quantified approximately 750 000 km2 of deforestation in the Brazilian Amazon through 2010, a total that accounts for approximately 
17 percent of the original extent of the forest.
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data from archives of the United States of America (in particular, the United States Geological Service, or USGS) 
are available for free. Brazilian/Chinese remote sensing imagery from the CBERS satellites is also freely available. 
CBERS-4 is part of the second phase of this Sino-Brazilian cooperation. The imagery is now used in important 
projects involving deforestation control and environmental monitoring in the Amazon Region. Other areas, such 
as water resources monitoring, urban growth, soil occupation and education, are also benefitting from CBERS-4 
imagery. In fact, it is currently fundamental for large-scale national and strategic projects. Two important examples 
are the aforementioned PRODES4 project and CANASAT5 (monitoring of sugar-cane areas). Data fusion between 
CBERS-4 and Sentinel-2 are already being considered. 

Table 1. Characteristics of Landsat-8 OLI and Sentinel-2 sensors.

Country
Satellite and
sensor

Resolution
and coverage

Cost for data 
(archive)

Feature

United States of 
America

Landsat-8
OLI

15 m – 30 m
180 × 180 km²

All data archived at
USGS may be 
accessed free of 
charge

Data are systematically 
acquired since June 2013

EU Sentinel-2
10 m- 20 m
Swath 290 km

All data archived at
ESA may be 
accessed free of 
charge

Data are systematically 
acquired since July 2016

Optical mid-resolution data (such as Landsat data) have been the primary tool for deforestation monitoring. Other, 
newer, types of sensors, such as radar (ERS1/2 SAR, JERS-1, ENVISAT-ASAR and ALOS PALSAR 1/2) and 
LiDAR, are potentially useful and appropriate (De Sy et al., 2012). Radar, in particular, alleviates the substantial 
limitations of optical data in persistently cloudy parts of the tropics. Data from LiDAR and radar have proven to 
be useful in project studies; however, to date, they are not widely used operationally for forest monitoring over 
large areas. In the future, the utility of radar may increase depending on data acquisition, access and scientific 
developments.

7.2.3. 	S pecifications for monitoring forest degradation from remote sensing
Most forest degradation can be detected by means of remote sensing methods; however, optimal approaches and 
methodologies for monitoring forest degradation are likely to vary depending on the type and location of the 
degradation, as well as on the forest types concerned. Robust methods to monitor forest degradation (and forest 
regrowth) remain under development. As stated in the GOFC-GOLD REDD+ Sourcebook (2016), measuring forest 
degradation or forest regrowth and related changes in forest carbon stock is more challenging than measuring 
deforestation, because such forest changes are not easily detectable through remote sensing, but require more 
frequent and better imagery and processing. 

4    http://www.obt.inpe.br/prodes/.
5    http://www.dsr.inpe.br/mapdsr/.
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Monitoring forest degradation is limited by the technical capacity to sense and record the change in canopy cover: 
small changes are unlikely to be apparent unless they produce a systematic pattern in the satellite imagery. Many 
activities cause the degradation of carbon stocks in forests; however, not all of them can be monitored well with a 
high degree of certainty, and not all of them must be monitored using remote sensing data (Miettinen et al., 2014). 
To develop a monitoring system for degradation, it is first necessary to identify the causes of degradation and assess 
their likely impact on carbon stocks:
•	 The areas of forests undergoing selective logging – with the presence of gaps, roads, and log decks – are likely to 

be observable in remote sensing imagery, especially the network of roads and log decks. Gaps in canopy caused 
by harvesting of trees have been detected in imagery such as that captured by Landsat, using more sophisticated 
analytical techniques to process frequently collected imagery (Grecchi et al., 2017).

•	 The degradation of carbon stocks caused by forest fires may be more difficult to monitor with existing satellite 
imagery (Miettinen et al., 2016). Almost all fires in tropical forests have anthropogenic causes.

•	 Degradation resulting from over-exploitation for fuelwood or other local uses of wood is often followed by 
animal grazing, that prevents regeneration – a situation more common in drier forest areas. This situation is 
unlikely to be detectable from satellite image interpretation unless the rate of degradation was intense, thus 
causing larger changes in the canopy.

7.2.4. 	 Availability of Landsat data
In 1972, NASA launched the first Landsat satellite with a mid-resolution sensor that was capable of collecting land 
information at a landscape scale. This satellite was the first in a series of (seven, to date) Earth-observing satellites 
that have enabled continuous coverage since 1972. Subsequent satellites were launched every two to three years. 
Still in operation, Landsat 7 covers the same ground track repeatedly every 16 days. To continue the series, the 
Landsat Data Continuity Mission (Landsat 8) was launched in 2013.

Almost complete global coverage captured by these Landsat satellites since the early 1990s may be downloaded 
free of charge from the USGS web portals6: in particular, such imagery consists in the Global Land Survey (GLS) 
data sets. These data serve a key role in establishing historical deforestation rates, although in some parts of the 
humid tropics (such as Central Africa), persistent cloudiness is a major limitation to using them. The full Landsat 
8 OLI (since June 2013) and Landsat 7 ETM+ (since 1999) USGS archives, and all USGS archived Landsat 5 TM 
data (since 1984), Landsat 4 TM (1982-1985) and Landsat 1-5 MSS (1972-1994) may be ordered at no charge from 
the USGS.

To date, given its low cost and unrestricted license use, Landsat has been the workhorse source for mid-resolution 
(10–50 m) data analysis. Key limitations in the use of Landsat sensors consist in the mixed nature of the measured 
signal, and the difficulties in identifying forest cover disturbances. The latter aspect is especially important in areas 
where small-scale processes are significant. Alternative sources of data include ASTER, SPOT, IRS, CBERS, DMC, 
AVNIR-2 or Sentinel-2.

7.2.5. 	 Availability of Sentinel-2 data
Sentinel-2A (S2A) was launched in 2015 and provides wide-area optical imagery with resolutions of 10 m (visible 
and near-infrared, or NIR), 20 m (red-edge, NIR and short-wave infrared, or SWIR) and 60 m (visual to short-wave 
infrared for atmospheric correction) from October 2015 onwards. 

6    http://glovis.usgs.gov/.
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The S2A has a wide swath width (290 km) and a 10-day revisit frequency. S2A coverage is global (capturing land 
masses). The launching of the S2’s identical B unit is scheduled for 2017, and will increase the S2’s revisit capacity 
to five days. The Copernicus programme already envisages C and D versions of these Sentinels to guarantee data 
availability until at least 2027.

The Sentinel 2 sensors – together with Landsat 8 – will provide core capacity upon which a viable set of globally 
consistent services in the forestry domain can be based, thus setting the stage for a number of innovative and 
challenging applications, and for the redesign of monitoring systems for a more accurate monitoring of forest 
degradation.

Sentinel-2 Product Level 2A is the standard level for which a processing tool will be made available through 
the Copernicus program (on the ESA Sentinel-2 Toolbox)7. Level-1C products contain applied radiometric and 
geometric corrections (including orthorectification and spatial registration in a fixed cartographic geometry). Level-
2A products are at the bottom of atmosphere reflectance in cartographic geometry. Currently, Level-2A products 
must be processed by the user. A higher level of processing of satellite imagery data (Level 3) would be required 
for REDD+ countries. Level 3 should consist in adequate image mosaics (that minimize cloud coverage) from 
the Sentinel-2 satellite time series, composed every 30 days or every three months over the tropical belt. The 
specifications for a standard Sentinel-2 Level 3 core product, to be made systematically and freely available through 
a free and open distribution platform, were prepared by the Copernicus programme in 2017.  

The technical quality of the Sentinel sensors significantly enhances the separation of land cover classes in forest land 
use, both for forest land (that is, forest types) and the complex domain of mosaics of agriculture and forest (including 
shifting cultivation). The 10 to 20 m spatial resolution of S2A (and S2B), combined with a ten-day (or five days with 
both S2A and S2B) revisit frequency will resolve the forest cover status and small-scale disturbances delineation 
at plot and log level detail. Slower forest conversion changes – in particular, the progressive removal of fuel wood 
or agricultural land abandonment leading to forest regrowth – will benefit from the high level of spatial details and 
the possibility to select the most relevant seasonal acquisitions. The complementarity of visible, NIR and SWIR 
channels (from S2) is unique in this respect too. Furthermore, the spectral compatibility of S2 with Landsat-8 and 
much improved atmospheric correction will greatly expand intersensor consistency and the potential for data fusion.

The finer spatial resolution (10 m) and the higher temporal frequency (a revisit time of five to ten days) of Sentinel-2 
acquisition will enable more accurate and regular detection and quantification of forest degradation in tropical 
countries than is possible from current medium-resolution satellite imagery. Consequently, in the near future, 
satellite imagery from the Sentinel-2 satellite sensor will provide potential for incremental change in the assessment 
of forest conditions.

The introduction of Sentinel-2 will potentially lead to a diffusion of forest monitoring capacities to national and 
regional government levels in the next five to ten years, for instance, as an extension or a component of National 
Forest Inventory (NFI) systems. This will require significant capacity building efforts, which should be, insofar as 
possible, directed towards anchoring a robust methodological framework. To the greatest extent possible, this should 
lead to standardized forest area estimates and map products at national level with an agreed level of accuracy and 
quality that can be integrated into regional and global applications. 

In summary, Landsat-type data are most suitable for assessing historical rates and patterns of deforestation. The 
availability of free and open Landsat-8 and Sentinel-2 data has increased for recent years; therefore, more detailed 
assessments of coverage periods lesser than five years may be possible in several parts of the world.

7    http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Data_products.
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7.3.	� The FAO Global Forest Resources Assessment’s Remote 
Sensing Survey

7.3.1. 	�B ackground on statistical sampling designed to estimate deforestation 
from optical sensors having moderate spatial resolution 

It would be ideal to conduct an analysis that covers the full spatial extent of the forested areas with imagery having 
moderate spatial resolution (Landsat-type), termed “wall-to-wall” coverage; however, this may not be practical over 
large and heterogeneous areas. In addition, it would place commensurate constraints on the resources available for 
analysis. For digital analysis with moderate-resolution satellite images at pan-tropical or continental levels, several 
approaches have been successfully applied by sampling within the total forest area, to reduce the costs and time 
required to conduct the analysis.

A sampling procedure that adequately represents deforestation events can capture deforestation trends (Achard et al., 
2002; Richards et al., 2000). Since deforestation events are not randomly distributed in space, particular attention 
is required to ensure that the statistical design is adequately sampled within areas of potential deforestation (figure 
1), for example through a high-density systematic sampling when resources are available (Mayaux et al., 2005).

Figure 1. Location of sample units of the TREES-II survey        

Achard et al., 2002; Richards et al., 2000

For its global Forest Resources Assessment 2010 programme (FRA 2010), FAO continued to develop its monitoring 
of forest cover changes at global to continental scales to complement national reporting. Technological improvements 
and better access to remote sensing data made it possible to expand the scope of the survey, compared to FRA 2000. 
The findings of the FRA 2000 tropical Remote Sensing Survey (RSS) (figure 2) were included as a chapter in the 
FRA 2000 Main Report (FAO, 2001) and reported upon in Drigo et al. (2009).
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Figure 2. �Location of sample units of the Forest Resources Assessment 2000 
programme        

FAO, 2001; Drigo et al., 2009

7.3.2. 	G eneral sample approach selected for the Global Remote Sensing Survey
The remote sensing surveys of FRA 2010 and FRA 2015 have been extended to all lands (not only the pan-tropical 
zone). These surveys aimed to estimate forest change based on a sample of moderate-resolution satellite imagery, 
and were designed to provide consistent and comparable estimates of tree cover and forest land-use changes over 
two decades at global and regional scales, to complement the increasing number of national statistics in FRA main 
reports that are based on national remote sensing surveys. 

In a coordinated effort, FAO and the Joint Research Centre (JRC) of the European Commission produced estimates 
of forest land use change from 1990 to 2005 for RSS 2010 (FAO and JRC, 2012). This global survey was then 
extended to the year 2010 (to cover the period from 1990 to 2010) for the FRA-2015 (Achard et al., 2014; Keenan 
et al., 2015).

The FRA 2010 RSS is based on a much higher number of smaller sample units than the previous FRA exercises, 
with a systematic grid – sample units are located at each intersection of the 1° × 1° lines of latitude and longitude 
that falls over land. This global systematic sampling scheme was developed jointly by FAO and the JRC to estimate 
the rates of deforestation at global or continental levels at intervals of five to ten years (Mayaux et al., 2005). 

Each sample unit has a core size of 10 km × 10 km with an external 5-km buffer for forest cover contextual 
information (that is, the full size of sample units is 20 km × 20 km for land cover information). These dimensions 
were chosen to allow for spatially explicit monitoring at a scale relevant to land management. 

This sampling scheme leads to approximately 13 500 sample units for the terrestrial part of the globe, or 
approximately 9 000 sample units when excluding desert areas, and represents approximately 1 percent of the land 
surface (0.8 percent along the Equator) with the geographical grid (figure 3). 
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Figure 3. �Location of sample units of the Remote Sensing Survey (RSS) of the 
FRA-2010 over the tropics.        

7.3.3. 	S election and preprocessing of satellite imagery 
The FAO FRA RSS 2010 is a global study with consistent methods and time series that can be extended to include 
more recent periods. Time series of moderate-resolution remote sensing data are attached to each sampling location 
through a quality-controlled, standardized and decentralized process. The following paragraphs briefly describe the 
satellite data set and preprocessing steps used for the FAO FRA RSS 2010 over the tropical regions. 

For each sample unit, orthorectified Landsat (E)TM Landsat images were acquired at no cost from the GLS archives, 
which are created and made available by the USGS (Gutman et al., 2013). For each sample unit, four images were 
selected with the lowest possible cloud cover and as close as possible to the target dates of 30 June for the years 
1990, 2000, 2005 and 2010. Where GLS data was unavailable, of bad quality (such as Landsat 7 SLC-off data) or 
cloudy for the area of the sample units (Potapov et al., 2010), alternative satellite scenes were acquired from the 
Landsat archives of the USGS or of other space agencies, such as Brazil’s INPE (Beuchle et al., 2011). The range 
of image acquisition dates was 1986–1993, 1999–2003, 2004–2007, and 2009–2011 for the years 1990, 2000, 2005 
and 2010 respectively. 

The selected images underwent an extensive preprocessing, including an image geolocation check, conversion 
to top-of-atmosphere reflectance, cloud-masking, de-hazing and image normalization on the basis of pseudo-
invariant features (Bodart et al., 2011). For multitemporal image analysis, a good geometric match of the images is 
fundamental. In this context, the geolocation of some images required enhancement. For this purpose, the Landsat 
ETM image (from the year 2000) was determined to be the “master image”. Consequently, the “slave image”, 
consisting mostly in Landsat 5 imagery, was shifted until a correct overlay with the master image was achieved.
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7.3.4. 	P rocessing and analysis of satellite imagery 
This section describes the analysis carried out over the tropical regions. 

After preprocessing, the satellite imagery was used in an automated multidate image segmentation to subdivide the 
sample unit (10 000 ha) into delineated areas (polygons) with similar spectral and structural attributes. The target 
MMU was 5 ha. On the segmented imagery, a supervised automated land cover classification was carried out, which 
was later converted to a land use classification with the help of expert human interpretation.

For each sample unit, the preprocessed images from the four “epochs” (that is, the years 1990, 2000, 2005 and 2010) 
were subjected to a multistep segmentation using eCognition software (Trimble©), followed by an object-based 
classification process based on membership functions defined by a collection of spectral signatures taken from 
across the tropical belt (Raši et al., 2011 and 2013). An MMU of 5 ha (or 50 pixels at 30 m × 30 m resolution) is 
considered for the interpretation of the satellite imagery to identify the forest cover changes. A finer “detection unit 
level” at approximately 1 ha was used in a first automated segmentation and labelling step before aggregation to 
5-ha objects for the interpretation phase.

Objects were classified into five land cover classes: Tree Cover, Tree Cover Mosaics, Other Wooded Land, Other 
Land Cover and Water (see table 2 for a description of each class). The Tree Cover class was defined in compatibility 
with the FAO definition of forest (FAO, 2010). 

Table 2. Land cover classes used by the JRC.

Class name Class description

Tree cover (TC)
Objects covered by 70–100 percent of trees, where trees are defined as plants 
higher than 5 m and with a wooden stem, and tree canopy density is greater 
than 30 percent 

Tree cover mosaic (TCM) Objects covered by 30–70 percent of trees

Other wooded land (OWL) Objects covered with more than 50 percent of plants lower than 5 m with one 
or more wooden stem(s)

Other land cover (OLC)
Land not covered by the TC, TCM or OWL classes, comprising natural 
grassland, agricultural land, built-up areas, bare soil and rock

Water (W) Rivers and lakes

The resulting classified objects, with an MMU of 5 ha, underwent an intensive process of correction of the land 
cover information assigned for each target year (Eva et al., 2012).

The JRC and FAO scientists collaborated with more than 100 remote sensing and forestry experts from tropical 
countries, including largely forested countries such as Brazil, India, Indonesia and the Democratic Republic of Congo. 

It must be noted that for the FRA 2010 RSS reporting (FAO and JRC, 2012), FAO employs a land use classification 
(FAO, 2010b), including a “Forest” land use class8; this is better suited to assessing drivers than a land cover 
classification, such as that used by the JRC (de Sy et al., 2015). A young forest plantation is considered as “Forest” 
in the FAO survey (trees able to reach more than 5 m), but is classified as “Other land cover” according to the JRC 
legend if the trees are not visible or lower than 5 m. 

8   � The “Forest” class of the FAO FRA 2010 report is defined as: “Land spanning more than 0.5 hectares with trees higher than 5 meters and 
a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly under 
agricultural or urban land use.”
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7.3.5. 	S tatistical analysis
The land cover and land cover change information available for all sample units is used to produce statistical 
estimates for the entire area of interest. Considering that very few satellite images were acquired at the exact same 
date of their respective epochs, the land cover (change) information of each sample unit is first linearly “normalized” 
(as a best approximation) to the target dates of 30 June for the years 1990, 2000, 2005 and 2010 to produce land 
cover statistics. For this purpose, we assume that the land cover changes detected occurred linearly over time. 

Areas lacking data due to clouds, poor satellite coverage or low-quality imagery in any of the reference years were 
considered as an unbiased loss of data, and assumed to have the same proportions of land cover as non-cloudy areas 
within the same site. This is achieved by converting the 1990–2000 and 2000–2010 land-cover change matrices 
to area proportions relative to the total cloud-free land area of the sample units. For the missing sample units (4, 
39 and 3 for 1990–2000 and 3, 39 and 3 for 2000–2010, from totals of 1 230, 2 045, and 741 sample units, for 
South America, Africa and Southeast Asia, respectively) a local average was used from surrounding sample sites as 
surrogate results. The following weights (δjj’) were applied to obtain the local average of missing sites:

where d(j,j’) is the distance between two sites.

For the statistical estimation phase, the sample units are weighted in relation to their statistical probability of 
selection. Indeed, although the sampling frame is systematic, it does not give equal probability to all sample units 
because the distance between sample units along a parallel is not the same as the distance along a meridian. All 
sample units are given a weight, which is equal to the cosine of the latitude to account for this unequal probability. 
The impact of these weights is moderate in tropical areas. The selected sample units that contain a proportion of sea 
compensate for those non-selected sample units that contain a proportion of land (when the centre of the sample 
unit is located in the sea), because they were considered as full sites. 

The proportions of land cover changes were then extrapolated to the study area using the Horvitz-Thompson Direct 
Expansion Estimator (Särndal et al., 1992). The estimator for each land cover class transition is the mean proportion 
of that change per sample unit, given by Equation 2:

where yic is the proportion of land cover change for a particular class transition in the ith sample unit. The weight 
of the sample unit is wi and m is the sum of the sample weights.

In case of systematic sampling, the usual “random case” estimator is positively biased (Stehman et al., 2011). 
Alternative estimators based on a local estimation of the variance enable a partial solution of the problem, that is, 
to reduce the bias. Here, an estimator of the standard error based on local variance estimation is used: 
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70 The “Forest” class of the FAO FRA 2010 report is defined as: “Land spanning more than 0.5 hectares with 
trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in 
situ. It does not include land that is predominantly under agricultural or urban land use.” 
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where f is the sampling rate, the weight wjj’ is an average of the weights wj  and  wj’ and δjj’  is 
a decreasing function [1] of the distance between j and j’ (note that if it is determined to set δjj’ 
= 0, the usual variance estimator is obtained). The standard error (se) is then calculated as: 
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where n is the total number of available sample sites (that is, not accounting for the missing 
sites even if these are replaced by a local average). 
Land cover changes were estimated by assessing the matrices of change (see table 3), for the 
decades 1990–2000 and 2000–2010. An object labelled as Tree Cover Mosaic (TCM) was 
considered as 50 percent forest cover, defined by the average of the upper and lower percent 
limit. Consequently, forest cover loss was calculated as being 100 percent of the tree cover 
converted to Other Wooded Land (OWL), Other Land Cover (OLC) or Water (W) plus 50 
percent of the tree cover converted to TCM and 50 percent of the TCM converted to OL, OWL 
or W. 
 
7.3.6.	Accuracy/consistency	assessment	of	estimates	of	forest	cover	changes	
The observations (source data sets) used to produce the results given in this chapter are derived 
from satellite interpretations. These surrogates to ground observations may be subject to error 
or uncertainty (bias) (Foody, 2010); however, these issues were not addressed in this 
assessment. The use of such surrogate data for assessing area change is inevitable in many 
areas of the tropics where no ground observations exist and where large areas of inaccessible 
forests can only be monitored at affordable costs by exploiting satellite data. However, an 
independent assessment was performed over 1 185, 1 552 and 830 points (for a total of 3 567 
points) distributed systematically within a random subsample of 240, 338 and 166 sample units 
in South America, Africa and Southeast Asia, respectively (a central point plus four points in 
the corners taken in each sample unit). In addition, from a 9 x 9 systematic grid (81 points taken 
at a distance of 1 km in each sample unit), all points identified as change in land cover during 
the decade from 1990 to 2000 were selected, resulting in 1 663, 1 194 and 1 425 points (for a 
total of 4 282) respectively for the three subregions. The corresponding polygons were 
carefully visually reinterpreted by independent experts using any available ancillary 
information (such as imagery from Google Earth, with due attention to the date of image 
capture). This enables an assessment of the “consistency” of the results of the interpretation.  
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any available ancillary information (such as imagery from Google Earth, with due attention to the date of image 
capture). This enables an assessment of the “consistency” of the results of the interpretation. 

To complement this consistency assessment, the results were also compared to the INPE interpretations for the 
decade from 1990 to 2000 (INPE, 2013) for a random selection of 34 sample units among the 411 sample units 
falling in the Brazilian Legal Amazon (Eva et al., 2012).

7.3.7. 	 Results for the tropics
Results of the FRA 2010 RSS have been published at global level for 1990–2000 and 2000–2005 (FAO and JRC 
2012) and at tropical or regional scales for 1990–2000 and 2000–2010 (Achard et al., 2014; Beuchle et al., 2015; 
Bodart et al,. 2013; Eva et al., 2012; Mayaux et al., 2013; Stibig et al., 2014). This section briefly reports the main 
results for the tropical region, to illustrate the outcomes of this RSS.

In 1990, there were 1 635 million ha of tropical forest and 964 million ha of other wooded land. By 2010, the forest 
area had fallen to 1 514 million ha, with an overall net loss over the two decades of 56.9, 30.9 and 32.9 million ha in 
South and Central America and the Caribbean, sub-Saharan Africa and South and Southeast Asia, respectively. Other 
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wooded land increased in that period to 975 million ha, mainly due to the increase of 18.6 million ha in Southeast 
Asia. In 2010, humid tropical forests accounted for approximately 64 per cent of the tropical forest cover, that is, 
972 million ha from a total of 1 514 million ha, with the following regional distribution: 599 million ha in South 
America, 210 million ha in Africa and 163 million ha in Southeast Asia.

At global level, the gross loss of tropical forests was of 8.0 million ha y-1 during the 1990s (0.497 per cent annually), 
with a slight decrease of 7.6 million ha y-1 during the 2000s (0.494 per cent annually), mainly due to reduced 
deforestation rates in the humid forests of Africa and Southeast Asia (from 0.70 to 0.36 million ha y-1 and from 1.70 
to 1.22 million ha y-1, respectively) (Achard et al., 2014). Large non-forest areas were also reoccupied by forests, 
reaching 1.9 million ha y-1 in the 1990s and 1.6 million ha y-1 in the 2000s. 

7.3.8. 	P recision of the estimates for the tropics
The estimates of forest area changes (gross loss, gross gain and net loss) have small statistical standard errors due 
to the large sample size: from 4 percent to 10 percent at global level, and from 11 percent to 19 percent on average 
at regional level. A dedicated accuracy assessment was carried out for the land cover maps of the tropical sample 
units for the 1990–2000 period. The overall agreements between the RSS results and the reinterpretations considered 
as reference information are of 92.9 percent for the forest labels and 85.5 percent for the forest change labels. The 
potential bias in these results (due to errors of interpretations) were assessed by comparing estimates derived from 
our sample to estimates derived from the reference data set. The relative difference is of -8.9 percent for the global 
forest area estimate – that is, a lower forest area estimate is derived from the RSS study compared to the reference 
data set – and of 11.2 percent for the global gross deforestation estimate; in other words, larger deforestation 
estimates were obtained from the RSS study. Comparison to the INPE interpretations for the 1990–2000 period for 
a random selection of 34 sample sites displays a good correspondence between the INPE interpretations and the 
RSS results, both for the forest area of the year 1990 and for deforestation in the 1990–2000 period, with slopes 
close to 1 (1.017 and 1.008 respectively) and an R2 close to 1 (0.986 and 0.978 respectively) (Eva et al., 2012).

7.3.9.	�I ntensification of the sampling scheme for forest cover change estimation 
at national scale

The global systematic sampling scheme described above can be intensified to produce results at the national level. 
Deforestation estimates derived from two levels of sampling intensity have been compared with estimates derived 
from the official inventories for the Brazilian Amazon and for French Guyana (Eva et al., 2010). 

By extracting nine sample data sets from the official wall-to-wall deforestation map derived from satellite 
interpretations produced for the Brazilian Amazon for the year-long period from 2002 to 2003 (INPE, 2016), 
the global systematic sampling scheme estimate gives 2.8 million ha of deforestation with a standard error of 0.1 
million ha. This compares with the full population estimate from the wall-to-wall interpretations of 2.7 million ha 
deforested. The relative difference between the mean estimate from the sampling approach and the full population 
estimate is of 3.1 percent and the standard error represents 4 percent of the full population estimate. The testing of 
the systematic sampling design within the Brazilian Amazon resulted in a low standard error of less than 5 percent 
of forest cover change rate.

To intensify the sampling intensity of this global survey over French Guyana, Landsat-5 TM data were used for the 
historical reference period (1990) and a coverage of SPOT high-resolution visible sensor imagery at a resolution 
of 20 m × 20 m was used for 2006. The estimates of deforestation between 1990 and 2006 from the intensified 
global sampling scheme over French Guyana are compared with those produced by the national authority to report 
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on deforestation rates for its overseas department under the rules established by the Kyoto Protocol rules (Stach et 
al., 2009). The latter estimates derive from a sampling scheme of almost 17 000 plots derived from the traditional 
forest inventory methods carried out by the country’s Inventaire Forestier National (IFN) and analysed from same 
spatial imagery acquired between 1990 and 2006. The intensified global sampling scheme leads to an estimate with 
a relative difference from the IFN of 5.4 percent. These results, as well as other studies (Steininger et al., 2009), 
demonstrate that the intensification of the global sampling scheme can provide forest area change estimates that 
are close to those achieved by official forest inventories with precisions of less than 10 percent, although only the 
estimated errors from sampling are considered and not errors from the use of surrogate data.

7.3.10. 	The future of the Global Forest Resources Assessment: towards FRA 2020
The FAO FRA is a continuously improving process: each assessment is an upgrade of the former one as information 
needs change, new and better data become available and new methods and technologies can be applied. Due to 
recent developments in the international forestry and policy arena, such as the Paris Agreement and the Sustainable 
Development Goals (SDGs), FRA must adapt to respond to evolving information needs, in terms of both scope and 
reporting periodicity.

The FRA has received technical guidance and support from international specialists through expert consultations 
organized at regular intervals by FAO and the United Nations Economic Commission for Europe (UNECE) over 
the last 30 years. The first consultation on the FRA was held in 1987; subsequent consultations took place in 1993, 
1996, 2002 and 2006 (Kotka I-V) in Kotka, Finland and 2012 in Ispra, Italy. The latest expert consultation was held 
in June 2017 in Joensuu, Finland.

The objectives of the expert consultation include the provision of recommendations on the scope of the next global 
assessment, including the country reporting process and the remote sensing component, and discussion of the 
frequency of reporting on core variables and annual reporting on SDG indicators.
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7.4.	 Other examples of RSS used for forestry statistics

7.4.1 	� Deforestation statistics from the Global Tree Cover product, University of 
Maryland

More recently, a new approach that employs recommended IPCC  good practices and a combination of remote 
sensing data (De Sy et al., 2012) to quantify tropical forest above-ground carbon (AGC) losses from 2000 to 2012 
was presented by the University of Maryland (Tyukavina et al., 2015). This study is an important extension of earlier 
studies applied to the Democratic Republic of Congo and Peru (Tyukavina et al., 2013; Pelletier and Goetz, 2015). 

More specifically, Tyukavina et al. (2015) use a sample-based approach combined with a wall-to-wall tree cover 
loss data set (Hansen et al., 2013) to estimate tropical forest area losses. 

The Global Tree Cover data set from the University of Maryland (Hansen et al., 2013) provides wall-to-wall data 
starting from the year 2000.  Hansen et al. (2013) divide world land area into four “tree cover” classes – 0–25 
percent, 26–50 percent, 51–75 percent and 76–100 percent – when undertaking wall-to-wall mapping using Landsat 
images. The authors found that in the tropics, the 76–100 percent tree cover class, which broadly corresponds with 
tropical moist forest, covered 1 324 million ha in the year 2000, while the area having above 25 percent tree cover, 
of 2 094 million ha, was of the same order of magnitude as the FRA 2015 figure for all tropical forest, a figure that 
was based on a threshold tree cover of 10 percent (Keenan et al., 2015).

Tyukavina et al. (2015) produced an unbiased estimate of forest area loss using a stratified random sample of 3 
000 pixels (each approximately 0.1 ha in size) distributed in tropical forested regions. Furthermore, Tyukavina et 
al. distinguished “‘natural forests” (primary and mature secondary forests, and natural woodlands) from “managed 
forests” (plantations, agroforestry systems and areas of subsistence agriculture with tree cover rotation). Tyukavina 
et al. confirmed that a sample-based approach can provide more accurate and significantly higher estimates of forest 
cover losses than a wall-to-wall approach: the higher estimate is explained by small-scale forest dynamics that were 
not depicted in the wall-to-wall tree cover loss map. Ensuring that these small-scale dynamics are captured correctly 
can be very important for individual countries’ efforts to set accurate reference levels.

The use of different definitions and methods can lead to very different estimates of forest area losses: for example, 
Tyukavina et al. define forests as areas where the tree canopy cover is greater than 25 percent, while FAO reporting is 
based on a tree cover threshold of 10 percent and a definition of land use. Moreover, Tyukavina et al. account only for 
gross forest losses, while FAO reports net forest loss (including afforestation and forest regrowth) (Keenan et al., 2015).

Tyukavina et al. (2015) illustrate the current capabilities of satellite data with a sample-based approach for estimating 
forest cover losses in the tropics and related carbon losses. 
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7.4.2. 	�E xample at national level: the Landscape Units of the Brazilian National 
Forest Inventory

Brazil occupies approximately 8.5 million km2, of which 4.9 million are covered by forests (FAO, 2015b). These 
forests are of enormous importance for the country, in environmental and socio-economic terms, and because of 
the contribution they make globally by delivering forest services, such as biodiversity conservation and carbon 
retention. The National Forest Inventory (NFI) of Brazil is compiled by the Brazilian Forest Service (BFS)9 of the 
Ministry of the Environment, in partnership with other institutions such as Embrapa, state environmental agencies, 
universities, research institutions and specialized herbaria. The NFI is one of the most important components of the 
National Forest Information System (Freitas et al., 2010), and therefore a key step in producing reliable and regular 
information on forest resources (Brazilian Forest Service, 2016). 

The main purpose of the Brazilian NFI is to generate information on forest resources, both natural and plantation, 
based on a five-year measurement cycle, to support the formulation of public policies aiming at the use and 
conservation of forest resources. For some Brazilian states, information on the second cycle is being collected; 
however, for the majority of the 27 states, data collection is still in the first cycle.  

The Brazilian NFI is based on a systematic sampling design, with the distribution of clusters (Field Sample Units, 
or FSUs) on a national network of sample points that are 648 seconds equidistant from each other, corresponding to 
approximately 20 km × 20 km between sample points at the Equator line. The cluster is composed by four subunits 
of 20 m × 50 m each. Field data collection comprises biophysical variables for forest and environment condition 
assessment, as well as socio-economic variables (interviews) to characterize how people living in nearby forests 
use and perceive the forest resources (Freitas et al., 2010). In addition, for some states, the NFI preliminary results 
present information on forest stocks, composition, and health and vitality. The assessment of patterns of change in 
time is possible by comparing estimates from successive inventory cycles. 

In addition to field data collected every 20 km × 20 km over the entire territory, the NFI also includes a Geospatial 
Component, which provides information at landscape level through Landscape Sample Units (LSUs), Land Use/
Land Cover (LULC) mapping and spatial analysis (Luz et al., 2015b). The Geospatial Component LSU methodology 
was developed as a joint effort between the FAO/BFS team10 and the Embrapa Forestry team11. As stated by Freitas 
et al. (2006), the sampling design to collect data at landscape level must be based on the same systematic grid used 
for the fieldwork, although using a systematic subsample with an interval of 40 km × 40 km (figure 4). The size of 
each LSU is of 10 km × 10 km (100 km2), the geometric centre of which corresponds to the location of a field cluster. 

9    The Brazilian National Forest Inventory is led by Joberto Veloso de Freitas and Claudia Melo Rosa.
10    Naissa Batista da Luz and Jessica Maran.
11    Maria Augusta Doetzer Rosot, Marilice Cordeiro Garrastazú and Yeda Maria Malheiros de Oliveira.
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Figure 4. �Location of the landscape sample units of the Brazil NFI for the state 
of Parana.       

Recently, the Brazilian Government has issued a recent regulation on the use of and changes to natural resources, 
under the umbrella of the new Brazilian Forest Law. The Rural Environmental Cadastre (CAR) is one element of 
this legislation. To implement this new regulation, the Ministry of the Environment acquired RapidEye (RE) imagery 
covering the entire country, annually, since 2011. As this imagery is available to other governmental agencies, in 
2013, the Embrapa Forestry team, BFS and FAO initiated the NFI Landscape Study as a pilot project, using the 
available RapidEye and Landsat 8 (L-8) imagery. RapidEye orthorectified imagery was used as the basis for an 
object-based image analysis approach (implemented in Definiens software). Polygons generated from RapidEye 
segmentation were then classified with the aid of several ancillary layers, such as enhanced vegetation indices, 
temporal series statistical layers (one year mean, minimum, maximum, and standard deviation) and information 
derived from the Global Forest Change (GFC; such as tree cover percentage for 2013) and processed using the 
Google Earth Engine Code Editor. Pixel-based RapidEye and L-8 unsupervised classification, performed using 
the IMPACT Toolbox software (developed by the JRC), were also included as ancillary information for RapidEye 
polygon classification (Luz et al., 2015b).    

Within the Brazilian NFI, landscape can be considered as a heterogeneous group of ecosystems embodied in different 
LULC types interacting with one another (Luz et al., 2015a). The mosaic of LULC classes – in which natural and 
anthropogenic components contribute to the quality of existing forest resources – were defined as: (a) tree/shrub cover; 
(b) planted forest; (c) natural grasslands; (d) agriculture and pasture; (e) urban areas; (f) bare soil; and (g) water bodies. 
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After the first phase concerning the LULC mapping involving the aforementioned classes, a second step is performed, 
the landscape structural analysis of each LSU. The methodology, which is tailored specifically to the NFI’s LSUs 
envisages innovative aspects relating to landscape spatial patterns, LULC mosaics and habitat fragmentation, 
connectivity and interface. The design incorporates traditional indicators, such as landscape composition, but also 
addresses fragmentation in a different manner, adopting a normalized and comparable index based on the habitat’s 
overall Euclidean distance. Another approach involves the quality assessment of riparian zones, based on the 
structural connectivity of these environments such as vegetation corridors, the degree of anthropogenic pressure and 
scenario simulations for riparian protection zones, as well as their ranking (Clerici and Vogt, 2012) with reference to 
conservation priorities. This is especially important in light of recent changes occurring in the Brazilian Forest Law 
concerning the extent of forest vegetation to be restored along rivers and water bodies. Trees Outside Forest (TOFs) 
are a specific theme within LSU analysis, and different approaches were tested to discriminate between and classify 
them using RapidEye imagery. The relevant definitions and premises were established by FAO, in partnership with 
the Institut de Recherche pour le Développement (IRD) (De Foresta et al., 2013).

A group of landscape indicators (and respective indices) is currently being calculated. These are the following:
•	 Landscape composition (proportion of tree/shrub cover that includes natural forest, other wooded lands and 

TOFs) and proportion of other natural/seminatural areas, which include natural grasslands and planted forest;
•	 Landscape taxonomy defined by the degree (percentage) of the presence of each LULC class; 
•	 Habitat morphological spatial pattern analysis (MSPA) implemented by Soile and Vogt (2008) in the Guidos 

Toolbox software (Vogt et al., 2007; Saura et al., 2011), which encompasses possible categories or classes, as 
core, edge, perforation, bridge, loop, branch and islets;

•	 Forest landscape mosaic, which envisages various classes and indices (and classifies a given location according 
to the surface of intensive agriculture and urbanized areas surrounding it) and is implemented in the Guidos 
Toolbox.

•	 Edge interface model, which generates various indices and considers the importance of fragmentation related 
to the change of LULC in the forest edges, and is implemented in the Guidos Toolbox;

•	 Landscape connectivity encompasses landscape connections priorities, based on the MSPA and Conefor12 
software (Saura and Torné, 2009); a ranking of the structural corridors under pressure in the landscape is also 
presented;

•	 Landscape fragmentation, an indicator that introduced innovative concepts to quantify forest fragmentation 
(in the Guidos Toolbox); it enables comparison of the degree of fragmentation in different locations, the 
measurement of changes in fragmentation and its monitoring over time;

•	 Riparian zones analysis, based on the structural connectivity of those environments as vegetation corridors, on 
the degree of anthropogenic pressure acting upon them and on scenario simulation for riparian protection zones 
based on the concepts elucidated by Clerici et al. (2011) and Ivits et al., (2009).

The LSUs’ structural quality is assessed against these indicators, represented by groups of indices. The linear 
weighted combination of selected indices generate a single score by LSU, which allows for analyses and comparisons 
between them, aiming to restore and monitor certain aspects of the landscape.

The efforts made by the Brazilian NFI constitute an essential contribution to the Brazilian Government’s commitment 
to sustainability. In 2010, Brazil voluntarily committted to reduce emissions by 80 percent in the Amazon and 40 
percent in the Cerrado (Savannah region) by 2020. The country plans to integrate existing instruments and to 
promote coordination and synergies between them to maximize the REDD+ results. The NFI provides tools that 
can contribute to those decisions. The NFI programme can also benefit the implementation and monitoring of other 
national policies on planted forests and on the integration of agriculture, livestock and forestry (iLPF-agroforestry), 
among others.

12    http://www.conefor.org.
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Brazil’s intended Nationally Determined Contribution – or iNDC – is considered a highly ambitious project. 
Regarding the spheres of forestry and LULC, it was proposed to strengthen compliance with the new Brazilian Forest 
Law at all levels; strengthen policies and measures to achieve, in the Brazilian Amazon, zero illegal deforestation 
by 2030 and compensation of greenhouse gas emissions from legal removal of vegetation by 2030; restore and 
plant 12 million ha of forest by 2030 for multiple uses; expand the range of sustainable management systems of 
native forests through georeferencing and traceability systems applicable to the management of native forests, to 
discourage illegal and unsustainable practices. Additionally, the commitment relating to the agricultural sector was 
to strengthen the Low-Carbon Agriculture Plan (ABC Plan) as the main strategy to ensure sustainable development 
in agriculture, including the further restoration of 15 million ha of degraded pastures by 2030 and the increment by 
5 million ha of iLPF-agroforestry projects, by the same year. Therefore, the Brazilian NFI will play an important 
role in the fulfillment of country goals and targets by providing valuable data sets on forest resources, LULC and 
landscape quality.

The landscape analysis complements the other two components of the IFN-BR, which consist in a field data 
collection exercise and a socio-economic survey. The adopted strategy has been to develop the methodology 
of all Brazilian NFI components, aiming at their integration and subsequent joint analysis. Thus, aspects of the 
physical and biological environment obtained in the field survey (ecosystem approach), integrated with spatialized 
information on LULC and the socio-economic environment may conform that which in contemporary terms is 
known as the landscape approach.

7.4.3. 	 The FAO Global Forest Survey project 
Objectives of the Global Forest Survey project 
The main objective of the Global Forest Survey (GFS) project is to provide global and regional estimates of forest 
inventory data for specific forest ecosystems. Forest inventory data is to be collected through a global network of 
field plots. The project is intended to be implemented on a global scale.

The specific objectives of the GFS project are to:
•	 develop a global network of permanent field sample plots, which will utilize existing field plots where possible, 

but will also include new field sample plots as required;
•	 Produce detailed, georeferenced global estimates of forest carbon, forest health, and other forest characteristics 

based on the field sample plots and remote sensing data;
•	 Develop an information portal and data sharing policy to make all data and results freely available; and
•	 Demonstrate the value of a single, permanent, freely available, web-based repository.

The data collection exercise is intended to be based on a multiscale sampling design and measurement protocols 
will be developed to assess forests, from basic (for example, tree cover percentage) to complex (such as land use 
types) parameters  Data will be collected by partner organizations, local authorities and communities and, where 
necessary, by FAO staff directly. All of the data collected in the context of the GFS will be freely available and 
accessible through a web-based GIS-enabled portal.

The first Global Drylands Assessment
The Global Drylands Assessment (FAO, 2016) is a pilot action within the World Forest Open Data project that 
focuses solely on drylands and on the use of satellite images from publicly available repositories (such as Google 
Earth Engine and Bing Maps). For the first Global Drylands Assessment, more than 200 experts with knowledge 
of the land and land uses in specific dryland regions were involved. 
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The global assessment draws on information from 213 795 sample plots in the world’s drylands. Each plot measured 
70 m x 70 m (approximately 0.5 ha), a size corresponding to the smallest patch that qualifies as forest according to 
the forest definition used by the FAO Global FRA (FAO, 2015a).

In locating sample plots in a grid across the drylands, each aridity zone was treated as an independent stratum. The 
relative sampling intensity assigned to each aridity zone was as follows: hyperarid = 0.5; arid = 1; and semiarid and 
dry subhumid = 1.5. The results are reported at the global and regional levels (FAO, 2016). The statistical sampling 
error for the estimate of the total forest land area for all drylands is about 1 percent.

Figure 5. �Illustration of sampling intensity of the First Global Drylands 
Assessment        

FAO, 2016

Data and tools used for the Global Drylands Assessment
The survey was set up using Collect, a software tool available in the Open Foris suite13 and then embedded in Collect 
Earth, which was developed in cooperation with Google Earth Outreach (Bey et al., 2016).

Sample plot data were collected from online libraries of satellite images using Collect Earth. Typically, each plot 
was overlaid onto several images obtained through Google Earth Engine and Bing Maps. Collect Earth is capable 
of visualizing reflectance values and user-defined indices such as the Normalized Difference Vegetation Index 
(NDVI) based on Landsat and MODIS satellite images. The visual interpretation exercise was facilitated by the 
temporal profiles of interannual vegetation indices, which were derived from lower-resolution satellite data (the 
ground resolution ranging from 30 to 250 m).

13   � Open Foris is a suite developed by the FAO Forestry Department to facilitate flexible and efficient data collection, analysis and reporting; 
see http://www.openforis.org/.
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Landsat imagery (having a resolution of 30 m) was available for all plots, and 89 percent of plots were also covered 
by finer-resolution images, more than half of which consisted in images from Digital Globe and having a spatial 
resolution finer than 1 m. The proportion of satellite image types was similar for all land-use categories.

Collect Earth projected each sample plot as a frame containing a grid of 49 control points, enabling users to 
make precise estimates of the proportion of plots taken up by trees, shrubs and other land elements. In the visual 
interpretation exercise, each expert used his or her knowledge of the location and information provided by remote 
sensing data to support the survey process.

Land use image interpretation
For each sample plot, data on over 70 characteristics were collected and recorded for the most recent point in time 
for which satellite images were available. The variables were selected to characterize land cover, land use, land use 
change and other significant land dynamics (such as desertification and greening), along with biophysical indicators. 
The year 2000 is used as the reference year, because it is considered to be first year for which consistent global 
coverage of satellite data (Landsat 7) is available.

The simultaneous use of low-resolution and very-high-resolution (VHR) satellite imagery facilitates the detection 
of land use and land-use change. For certain land elements (for example, distinguishing between trees and shrubs), 
satellite data and local knowledge sometimes proved to be insufficient; therefore, a decision rule based on the crown 
diameter of trees and shrubs was adopted. Elements with a crown diameter larger than 3 m were considered trees; 
elements with smaller diameters were considered shrubs. Collect Earth does not allow for the direct measurement 
of tree height; therefore, tree shadows (where visible) were used in addition to the crown diameter threshold to 
determine whether elements were sufficiently tall (in other words, 5 m or taller, consistently with the definition of 
forests used in the Global Drylands Assessment) to be considered trees.

Land use is assessed on the basis of the six land-use categories established by the IPCC  (IPCC, 2006): forest, 
cropland, grassland, wetlands, settlements, and other land. A predominant land use is assigned to each sample 
plot, based on the presence of key land-use indicators interpreted according to a hierarchical rule (Martinez and 
Mollicone, 2012). For example, a sample plot with a crown cover greater than 10 percent is not classified as forest 
unless the prevailing land use can also be identified as forest. Only one land use per sample plot can be assigned.

Results and lessons learned during the first Global Drylands Assessment 
FAO has used this approach to produce a global assessment of the drylands (FAO, 2016) by analysing approximately 
214 000 sample plots (Bastin et al., 2017). This survey is the first statistical sampling-based assessment of land 
use, including the assessment of forests and tree cover, in the global drylands. Therefore, it provides a baseline for 
monitoring changes in dryland forests, tree cover and land use, globally, regionally and by aridity zone.

According to the first Global Drylands Assessment, the world’s drylands contain 1.11 billion ha of forest. More than 
half of these (specifically, 566 million ha) are in the dry subhumid zone, mostly in the northeastern part of southern 
Africa and the western (pre-Andean) part of South America. Approximately two thirds of dryland forests (742 
million ha) can be considered closed forests, because they have a crown cover density of more than 40 percent. More 
than half of these forests (most of which are in Europe and South America) have a crown cover of 90 percent or more.
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The Global Drylands Assessment uses data from publicly and freely available online libraries of satellite images 
using a simple visual interpretation tool, and it engages people with land-use expertise in a systematic data collection 
exercise. This approach has the following advantages:
•	 A statistics-based assessment of a basic set of variables can be conducted rapidly and inexpensively to 

complement other methods, because sample plots are assessed using satellite images rather than in the field; and
•	 A large number of people can be engaged in the assessment process, thanks to the ease of use of the interpretation 

and because the software and data are both available free of charge.

The first Global Drylands Assessment produced results (FAO, 2016; Bastin et al., 2017) in less than one year from 
conception, in a participatory and collaborative manner. The Global Drylands Assessment provided an opportunity to 
test the approach developed at a global scale. However, the methodology must be further developed for non-dryland 
areas, in particular to reduce interpretation errors.

A potential source of error is inconsistency: more than 200 people were engaged in the visual interpretation of 
satellite images, and the supply of images was not the same for all 213 795 sample plots assessed. The risk of 
inconsistency was mitigated by ensuring that all experts used the same training modules and tools. Additional 
measures to reduce inconsistencies and errors in interpretation will be implemented in a pilot assessment of all 
lands worldwide.

The methodology can be adapted to accommodate more intensive sampling for specific regional, national and 
landscape-scale needs, if required by countries and other users. For example, it is used at the regional scale for the 
baseline assessment of the Great Green Wall area over more than 20 countries both north and south of the Sahara, 
building on data already collected in North Africa, the Sahel and the Horn of Africa.

Future prospects
The results of the Global Drylands Assessment were reported in early 2017 (Bastin et al., 2017), following 
supplementary ground measurements and analyses. The results were made publicly available. It is expected that 
the Global Drylands Assessment will be repeated every two years.

The use of Collect Earth and other relevant tools for baseline assessments and monitoring must be further promoted 
through capacity-development events and workshops at regional and national levels. These tools provide a new 
and economically feasible way of assessing trees, forests, land use and land-use change in all areas of the world, as 
shown by the first Global Drylands Assessment.

FAO intends to apply the methodology in a global pilot assessment of all types of land by adding approximately 250 
000 sample plots to be visually interpreted through Collect Earth. Global estimates of forest areas will be produced 
from a total of approximately 500 000 sample plots each about 0.5 ha in size. These results will be integrated into 
the Global Forest Survey’s project database.
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7.5.	� Complementarity between estimates of changes in 
forest and agriculture

The complementarity between estimates of changes in forest and agriculture areas is illustrated by the analysis 
carried out by VITO, IIASA, HIVA and IUCN NL in the study entitled “Comprehensive analysis of the impact of 
EU consumption on deforestation”, funded by the European Commission, hereafter EC Technical Report (European 
Commission, 2013).

Worldwide gross deforestation from FAO Forest Resources Assessment 2010 for 1990–2008
For the period from 1990 to 2008, worldwide gross deforestation is estimated at 239 million ha (Mha), or about 13 
Mha on average per year, with substantial regional variations, as reported in the FAO Forest Resources Assessment 
2010. During the same period, gross deforestation was partially compensated by afforestation and by the natural 
expansion of forests, together counting for 115 Mha. Thus, net deforestation was of 124 Mha (FAO, 2010a).

In the EC Technical Report (2013), using FRA 2010 (FAO, 2010a) and FAOSTAT land use domain databases 
(FAOSTAT, 2011), gross deforestation is attributed to five main sectors: Agricultural Expansion, Logging (prior to 
agricultural expansion), Urban Areas Expansion, Natural hazards (especially wildfire), and Unexplained. Using a 
transition model, the land use changes reported in FAOSTAT for the above sectors are linked to the deforestation 
areas identified in the FRA 2010. Moreover, a fraction of the agricultural land expansion allocated to deforestation 
is reallocated to “logging for industrial round wood extraction”, to account for wood extraction preceding the 
conversion of forest land for agriculture.

Unexplained deforestation 
When gross deforestation cannot be explained by agriculture, logging, built-up area increases or natural hazards, 
it is termed Unexplained in the EC Technical Report (2013). Of the 239 Mha of worldwide gross deforestation, 
approximately 58 Mha (24 percent) of reported deforestation cannot be conclusively linked to the conversion of 
forests for clear consumption purposes or other reported deforestation causes. The largest source of uncertainty 
relates to the data on deforestation. However, FAO considers even the 9 percent difference in forest area between the 
FRA 2010 assessment and the FRA 2010 RSS as a good result, considering the differences in the methods adopted 
(FAO and JRC, 2012). Furthermore, an accurate assessment of tree cover at lower canopy densities (from 10 to 30 
percent) is difficult with both the country-level FRA 2010 assessment and the RSS. Therefore, uncertainties are 
particularly significant in dry regions and for degraded forests. Unlike the situation in Africa, no large discrepancies 
were found between the RSS survey and FRA 2010 with regard to the deforestation rates for South America. 
Agricultural production statistics and trade data were considered to be relatively reliable.

Unexplained deforestation can be partially attributed to erroneous deforestation figures (overreporting) and agricultural 
area data at the national level (underreporting), as demonstrated by the recent results of the FRA 2010 RSS. Second, 
the Unexplained category can be partially interpreted as the result of long-term degradation effects ensuing from 
several informal practices being carried out in forests, such as illegal logging and unsustainable fuelwood gathering. As 
consistent global data and clear cause-consequence relationships on the latter are non-existent, their impact is assumed 
to be taken into consideration in this category. Third, the conversion of forests into agricultural land may encompass 
more conversion than will actually result in productive (and reported) agricultural land.
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Drivers of deforestation
For the remaining 182 Mha of worldwide gross deforestation, approximately 41 Mha (17 percent) were caused by 
natural hazards (mainly natural or man-made fires) that failed to result in reported agricultural land expansion (EC, 
2013). The country of Indonesia alone lost 9 Mha of forest because of the 1997–1998 El Niño Southern Oscillation 
(ENSO). Furthermore, approximately 9 Mha (4 percent) were turned into built-up land and infrastructure. The 
remaining 132 Mha, or 55 percent of worldwide gross deforestation, can be clearly attributed to the conversion 
of forest land to land for crop production, ruminant livestock production and industrial round wood production 
(logging). 

Of the 132 Mha (55 percent) of deforestation linked to the global production of agricultural and forestry products, 
only 4.5 Mha (or 2 percent) of deforestation was attributed to logging, representing only the impact of logging which 
precedes conversion into agricultural land (EC, 2013). 

Additionally, within the overall impact of the agricultural sector (128 Mha or 53 percent), 69 Mha (or 29 percent) of 
forests were directly or indirectly cleared for cropland to meet the global human demand for food, feed for livestock, 
fuel and fibres from crops. Approximately 58 Mha (24 percent) of forests were cleared for pastures to raise livestock.
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Chapter 8

Organization, resources and 
competences for adopting remote 
sensing in agricultural statistics
John Latham

8.1. Background

Timely and accurate temporal information on crops during the growing period, and estimates at harvest, provide 
important inputs into reliable estimates for food security, planning, policy formulation and agriculture marketing 
strategies. Experience has shown that the quality of available agricultural data (agricultural censuses, crop monitoring 
and yield estimations) is generally inconsistent and erratic. Therefore, an improvement in data collection and 
reporting techniques is warranted. Recent developments in geospatial data and remote sensing processing, together 
with reductions in cost and increases in the cover, frequency and resolution of satellite imagery offer robust new 
data and methods for strengthening data systems (Bell and Dalton, 2007; Murray, 2010). A paradigm shift has now 
taken place, such that remote sensing data systems now offer robust primary estimates of agricultural production 
and are no longer surrogates of purely ancillary data sets for validation. 

Traditional methods of predicting crop yields focus on models that integrate climate, soils and fertilizers, irrigation 
water and agrometeorology as response functions to describe crops yields and production assessment (Wiegand and 
Richardson, 1990). These techniques are generally based on strong physiological and physical concepts. However, 
they suffer from limitations when delivering reliable outputs under conditions of extensive spatial variability in 
soils, stress factors or poor management practices (Wiegand and Richardson, 1984 and 1990). However, geospatial 
technologies (remote sensing and geographic Information systems (GIS)) have been promoted as potentially valuable 
tools for agricultural monitoring because of their synoptic coverage and ability to monitor temporally (Hinzman et 
al., 1986; Quarmby et al., 1993). There has been an emphasis on developing fast-track and reliable procedures to 
provide crop forecasts early in the season, and estimations at the end of the season.

8
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Agricultural censuses are increasingly employing geospatial technologies and satellite remote sensing, or using 
land cover products derived for other purposes to support area sample frame (ASF) based approaches based on 
area sample frames (ASFs) over list frame sampling. Remote sensing and other GIS data sets also support the 
development and maintenance of Master Sample Frames (MSFs; see Carfagna, 2013) that integrate multiple 
geospatial data layers (such as census enumeration areas, field boundaries and crop coverages), that allow for 
the effective reuse of the sample frame (Carfagna and Gallego, 2005). While remote sensing techniques have not 
replaced the need for agricultural enumeration, integrating remote sensing and GIS into these sampling and survey 
procedures has the purpose of increasing the accuracy, practical efficiency, repeatability and cost-effectiveness by 
reducing the time required to create sampling frames. Currently, GPS, GIS and imagery are used together to support 
more efficient field-based agricultural surveys and censuses (Carfagna et al., 2013).  

However, the use of remote sensing within agricultural monitoring, estimation and reporting requires both data and 
technical resources capable of addressing the big data analytics in which the new generation of geospatial modellers 
must be well versed. The above situation promotes the use of satellite remote sensing for monitoring of crops and 
agricultural systems, enhanced skill sets and training for image processing and use within the field operations. 
Despite the inherent challenges, these approaches have been extensively developed within other sectors; therefore, 
the use of remote sensing within agriculture can often capitalize on data sourcing and processing for other objectives 
and with significant options for institutional sharing. 

The following sections specify the technical and practical requirements to support the use of remote sensing and 
GIS within agricultural statistics and provide examples of the integration of remote sensing within agricultural 
statistics and reporting.

8.2. Organization 

Generally, public-sector organizations are the main producers of agricultural statistics. However, in recent years, 
private-sector organizations have increasingly been conducting these assignments. Business enterprises, and 
particularly industries such as sugar mills, feed and beverages, tend to outsource their temporal requirements, to 
improve their working efficiency and manage industrial operations. In the conventional system, manual methods 
have predominated and the data would only become available at the end of the season, moreover lacking a temporal 
and broad perspective at a specific time.

Satellite-based organizations must necessarily be multidisciplinary in nature, capable of simultaneously integrating 
information from satellite remote sensing, GIS, statistics, agronomy, agrometeorology, economics and software 
development. Additional subject-matter specialists can be dovetailed into programmes to address the specific 
requirements of a particular industry or to study issues of consumption patterns, food security, and import and export 
regimes. Organizations should hire technical staff for data entry, basic maintenance work for data development and  
for conducting field surveys, although crowdsourcing has considerably changed the nature and modalities for these 
types of work too. Maintaining the representativeness of crowd sourced data and ensuring that it is unbiased are 
current challenges.
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8.3. Resources 

The resources required by organizations to begin producing agricultural statistics may be broadly divided into the 
following categories:
•	 Qualified staff;
•	 Laboratories (hardware and software; however, these are becoming increasingly limited due to cloud-based 

storage and processing analytics);
•	 Input data determination (multi-sensor is often preferred); 
•	 Work planning;
•	 Training; and
•	 Funds.

Agricultural statistics can benefit from the use of remote sensing data and geospatial processing in multiple ways, 
depending on a number of criteria and resource requirements. These vary with the objectives and purpose of the 
surveys, and range from:
i.	 Availability of baseline data for identifying the ASF’s most appropriate characteristics, given the specificities 

of the territory; 
ii.	 Construction and maintenance of the ASF;
iii.	 Stratification of the ASF, for example by using land cover data on the cropped area or on specific or seasonal 

crops; 
iv.	 Geospatial mapping of specialist and minor crop distributions, large- and medium-scale commercial farms for 

selective sampling frames; 
v.	 Support for crop field survey procedures and logistics; 
vi.	 Provision of additional variables in regression or a calibration estimator and small area estimation; 
vii.	 Crop yield monitoring and forecasting; and 
viii.	Mapping of condition factors (such as pests and diseases) and natural hazards and derived indices of seasonal 

crop productivity (such as the Normalized Difference Vegetation Index or NDVI). 

The multiple applications of remote sensing beyond its direct application in agricultural statistics may also be 
relevant in related domains. For example, imagery is widely used within livestock pasture and rangeland assessment, 
natural resource management, monitoring sustainable agriculture and rural development, land degradation, human 
impact assessments and hazard and vulnerability mapping. These distinct uses may affect the selection of the 
appropriate image resources and characteristics (such as the seasonality, date, resolution, return interval, and spectral 
bands) supporting multi-use submissions. The uses will also require different levels of ancillary geospatial data, 
funding support, equipment and training.
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8.3.1. 	Qualified staff
Statistics on crop production are based on two major components: crop area estimation and yield forecasting. The 
area can be estimated using Area Frame Sampling (AFS) or image classification of the complete coverage of a 
region. Remote sensing and GIS analysts are traditionally responsible for the image processing and construction of 
Area Frames, while statisticians are responsible for sample design, extrapolation and making estimates, together 
with their respective coefficient of variations. Image analysts often calculate the area based on pixel- or object-
based classification. Field staff are responsible for conducting the field survey and crop signature collection. There 
may be an overlap in the skill requirements, for example where certain sampling and listing processes require both 
geospatial inputs and statistical sampling procedures (such as serpentine sampling). 

A wide range of disciplines must be combined and collaborate with one another to support the improvement of 
agricultural statistics (table 1).

Table 1. �Summary of the disciplines required to operate remote sensing within 
agricultural statistics and reporting.

Thematic areas and 
expertise

Description of requirements

Remote sensing and GIS 
analysis

Satellite-extracted products (such as NDVI and NDWI (Normalized Difference Water Index)). 
Land cover, land use data sets, image processing (image enhancement, pixel- and 
object-based image classification, features interpretation and extraction, generation 
of thematic maps, spectral signatures of crops, remotely sensed phenological crop 
calendars and crop maps), geospatial inputs into sampling and area frame construction

Statistician
Construction of sample frame design, area frame development, random segments 
selection, questionnaire design for field data collection, field data correction, crop area 
estimates, statistical analysis for crop yield forecasting 

Agronomist
Crop calendar, satellite acquisition time frame, crop condition assessment using satellite 
and ground-based information

Agrometeorologist Collection and updating of meteorological parameters

Software developer
Development of desktop and web applications for field data collection and automation 
of data processing 

Field staff
Field staff for ground data collection using GPS, validation, listing and agricultural 
sampling or cutting 

Support staff Data entry, digitization, printing 

8.3.2. 	Laboratories: hardware and software requirements 
Laboratories are required to accommodate the necessary manpower and equipment. The space to be allocated for the 
laboratory may depend upon the size of the operation that the particular organization is to carry out. Large analytical 
facilities can now be compact, given the availability of cloud-based computing and analytics technologies.

The hardware resources required for a geospatial agricultural statistics laboratories are shown in table 2.
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Table 2. �Summary of requirements for a geospatial agricultural statistics 
laboratory (hardware).

Item Description/purpose

Workstation

Processor: core i7, Xeon 
RAM: >32 GB RAM
Graphic card: 2–6 GB
Hard disk size: 2–4Tb 
For image processing 

Laptop/tablet Field data collection 

GPS To capture field coordinates 

Smartphone/tabs Field data collection and near-real-time transmission 

Camera Digital cameras for validation and verification of classifications

Printer/plotter Colour printer A4 and A3 size, plotter of A0 size to print reports and maps 

Scanner A3 or larger-size scanning for historical maps 

Storage/backup server Data storage: 16 Tb

Network To connect workstations 

Modern mobile devices may integrate GPS tagging for photographs, data communications and storage for offline 
applications, thus reducing the number of systems used in the field. 

The software requirements for a geospatial agricultural statistics lab are shown in table 3.

Table 3. �Summary of requirements for a geospatial agricultural statistics 
laboratory (software).

Discipline Software

Statistical

SPSS: statistical analysis

Excel Stat: area and yield calculation

R (Open Source statistical software)

GIS/remote sensing

ArcGIS 10.x:  development of GIS, spatial queries and analysis 

QGIS (Open Source): development of GIS, spatial queries and analysis

ERDAS Imagine 9.x:  image processing, Classification 

ENVI: image processing, classification

E-Cognition: image processing, object-based classification

FME (conversion, transformation and workflow automation in geospatial domain)

Mobile survey applications 
and
Computer-Assisted Personal 
Interviewing (CAPI)

ODK (Open Data Kit) etc./bespoke Android applications for field geospatial survey (e.g. 
MAGIS)

CAPI software – e.g. Survey Systems (World Bank / Area Frame Survey System (AFSS), 
Collect mobile (FAO)

Metadata/data 
dissemination

GeoNetwork – geospatial metadata, data download and display
Web mapping applications – for information dissemination (MapStore, GeoServer, 
Leaflet, Arc Server, etc.)
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8.3.3. 	Input data
A key component of the implementation process is the input Earth Observation data and the ancillary geospatial data 
required for agricultural statistics generation. A number of factors determine the suitability of different image sources 
(spatial and temporal resolution, frequency of coverage, spectral resolution and sensor type), with consequent 
implications for the sourcing and costs of acquisition and processing. Image resolution is a critical parameter in the 
selection criteria; however, it is balanced against a range of related factors, such as the size of the field, the revisit 
frequency, and practical factors such as costs and processing. The increasing availability of high-resolution (over 1 
m and lower than 5 m) and very-high-resolution (or VHR; lower than 1 m) data, combined with larger swath widths 
(such as that obtainable from Sentinel 2 (9 to 10 m), free of charge and at medium-resolution – between 5 and 30 
m in resolution – with a swath width of 290 km), is changing the availability and suitability of imagery resolutions. 
Delincé (2017) has examined image suitability in relation to the size of field systems and plots, emphasizing the 
predominance of small and very small fields within agriculture, particularly in Africa and Asia, where over 80 
per cent of the fields fall within such definitions as determined by the IIASA 1-km2 global cropland data (Fritz, 
2015). The implication of such smallholder dominance is that imagery suitability favours higher-resolution data in 
those agricultural settings where increased numbers of pixels are contained within a plot boundary (that is, reduced 
mixed pixels). However, this is an evolving situation, and new sensors with wider swaths and higher resolutions 
are enhancing the options available. Additional constellations of satellites and use of mixed sensors (for example, 
Demos 1 and 2/UrtheDaily, OptiSar, Pangeo Alliance and Planet Labs) provide new capabilities, frequencies and 
data resolutions that open up new possibilities for application.  

Data inputs also include remote sensing validation and field survey data. Imagery can also be used for “pseudo-
field” verification, using higher-resolution imagery and aerial photography to replace on-site surveys. While VHR 
imagery enables the straightforward identification of objects at the ground level, it is important to understand the 
specific needs and applications for which the imagery is proposed. Generally, not only the cost of the procurement 
of the images increases with the spatial resolution, but also the ability to store, process and analyse these images. 
However, the capacity to conduct big data analytics in cloud computing is rapidly reducing these considerations.

8.3.4. 	Work plan 
The workflow for the integration of remote sensed data and derived land cover data into the crop area and yield 
estimation procedures include the following steps: 
i.	 selection and acquisition of imagery or existing classified data; 
ii.	 preprocessing and image processing; 
iii.	 integration of ancillary data and field validation data to generate classifications that can be integrated into the 

Area Sampling Frame; and
iv.	 ASF construction, stratification and calculation 

The acquisition time period of the satellite imagery depends upon the crop’s phenological stages; however, the image 
selection may depend on the survey’s specific objective (table 4).
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Table 4. �Sample crop calendar for Asia to support image acquisition windows 
and meet sampling objectives.

Task Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Acquisition

Pre Processing

Field survey

Image classification

Validation

Crop estimates

   Winter (Rabi) Crops	    Summer (Kharif) Crops

Third-party evaluation is always useful to identify any shortcomings and deficiencies in proposed or approved 
systems. It is appropriate to engage experts of repute from an independent organization or source to validate the 
procedures and findings. A technical audit of the data can also help to improve data quality.

8.3.5. 	Training requirements
The technical requirements for use of remote sensing and GIS call for investment in training and capacity 
development to support implementation. This, in turn, requires adequate training, e-learning materials and support 
to the application of crop area and yield estimation. Regular training from specialized national and international 
organizations is necessary to further support the use of new technologies, although much of the specialist remote 
sensing processing and geospatial analysis can be run nationally by more specialized sensors (such as the Synthetic 
Aperture Radar, or SAR), which may require further capacity development. 

The following training curricula for integrating and supporting the application of remote sensing and GIS are 
envisaged:
i.	 Basic concepts of

a.	 	Remote sensing
b.	 	GIS 
c.	 Statistics 
d.	 	Agronomy

ii.	 Remote sensing and image preprocessing, processing, classification, analysis and reporting;
iii.	 GIS data creation, editing, geodatabase development and geospatial tools for analysis; 
iv.	 Land cover classification approaches, image segmentation, photo-interpretation, automated and manual 

classification, field verification and accuracy assessment, including use of pseudovalidation;
v.	 Integration of agro-environmental parameters derived from remote sensing data (crop calendars, phenology 

and plant response) and ground-based information for yield forecasting;
vi.	 Remote sensing and GIS for ASFs, stratification, sample selection, design of questionnaire, using information 

derived from remote sensing, and probability sampling;
vii.	 GIS software for constructing area sample design, stratification, probability-based sample selection, design of 

questionnaire, control sampling and non-sampling errors;
viii.	GPS operation and field data collection for enumerators;
ix.	 Statistical sampling techniques for strata base point and interval estimation of parameters and accuracy of their 

estimates.
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The extent, scope and periodicity of training are to be determined according to the team’s requirements and/or 
composition.

8.3.6. Funding
Integrating remote sensing into agricultural statistics necessitates allocation of appropriate funding levels. The costs 
for national statistical purposes may be defrayed by using imagery for multipurpose applications, and ensuring 
multiple-use licensing is important. However, with the availability of Sentinel-1 and -2 and  Landsat-8 medium-
resolution imagery reduces the data proportion of the costs and supports shifting from imagery to processing and 
field data collection and validation activities. Such costs must be set against the increased efficiency of the resulting 
statistics, the efficiency gains in the practical and logistical execution of field operations and the potential to share 
costs with other applications.

The costs of verification using high- and VHR data may reduce the costs of field validation; however, it does not 
eliminate the field survey components, although it can make these more efficient by removing the need for field-
based measurements where the field enumeration is supported by GIS and contemporary image products for field 
area measurements.  

Hardware and software are mostly one-time costs. The distribution of the costs among resources for operating an 
agricultural monitoring system based on remote sensing or GIS is illustrated in figure 1. 

Figure 1. �Distribution of costs within an agricultural monitoring system 
based on remote sensing or GIS.        
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This distribution may vary from country to country, crops to crops, and by season and project area.

The United Nations (UN) has developed a series of purchase agreements with key image providers, including 
MacDonald Dettwiler (MDA, for QuickBird, IKONOS, WorldView-1, WorldView-2, GeoEye-1, WorldView-3, 
KOMPSAT-2, KOMPASAT-3, ZY-3 and RADARSAT-2) and Airbus DS Geo (the images of which are derived from 
TerraSAR-X, SPOT 6/7 and Pleiades). In the context of humanitarian actions, the image sources are also available 
through the International Charter for Space and Major Disasters1. Integrating national agricultural monitoring with 
the FAO/WFP CFSAM (Crop and Food Security Assessment Mission) assessment missions provides technical 
assistance to crop production forecasts.

8.4. Implementation of the program: case examples

FAO programmes supporting land cover mapping provide examples of the application of multiple scales of 
remotely sensed data to agricultural statistics. Applications in Ethiopia, Pakistan, Afghanistan, and Bangladesh 
have created national land cover databases from high-resolution imagery and supported the integration of products 
into agricultural surveys, capacity development, training and IT systems development. An example from Rwanda 
illustrates the use of VHR aerial orthophotographs as the basis for multiple frame surveys. Recent FAO Land Cover 
Classification (LCCS) standardized land cover mapping in Pakistan (in particular, in the Sindh and Punjab, Khyber 
Pakhtunkhwa, Baluchistan and FATA provinces) and in Afghanistan provide the relevant inputs to area frame 
development. However, even with existing land cover data, it is necessary to evaluate the suitability of the data to 
support the stratification (for example, based on crop percentage classes). Existing land cover data may only be 
suitable for stratification if it is of a suitable resolution, maintains certain classes and is relatively recent compared 
to the rate of change within the landscape. 

8.4.1. Example 1: Ethiopia – application of area frame stratification
A key use of geospatial and remotely sensed data within agricultural statistics occurs at the design level: that is, area 
frame and stratification and sample selection (Carfagna, 2013). The Central Statistical Agency (CSA) of Ethiopia 
has used traditional list frame sampling (based on the list of Enumeration Areas, or EAs) as the basis for field- and 
household-based agricultural surveys. It was recognized that this approach has limitations: the raising factors rely 
on the number of households (HHs) rather than on the cultivated areas, and there are non-sampling errors of missing 
fields. The CSA conducted a comparative evaluation of list- and area-frame-based approaches in the 2008–2009 
meher season (the rainy season from June to October). The area frame was based on EAs as the Primary Sampling 
Units (PSUs) and were the same as those used for population census surveys conducted with approximately 150 to 
200 HHs, which were digitized in GIS. Stratification of the PSU was undertaken on the basis of the percentage of 
cropped area that was created by the manual interpretation of the remotely sensed data (National Statistical Methods 
Programs for Agriculture in Ethiopia, 2008).

The EAs were categorized into five classes (zero cropped areas and four equal interval classes up to 100 per cent 
cropped); the stratum comprising zero cropped areas was excluded from the survey, although this may introduce 
bias in cases where there is marginal production (such as in forest cropping or urban agriculture). The initial 
evaluation (conducted in West Shewa) used manual interpretation of images to derive the cropped area within each 

1    https://www.disasterscharter.org/web/guest/home;jsessionid=E8C6DFA7B8CEDD1D3C1622415CA623C6.jvm1.
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EA. Although the process did not initially use image segmentation and full land cover mapping, subsequent tests 
(held in Oromiya) employed a land cover classification system using the FAO LCCS (Di Gregorio et al., 2005) 
methods. The LCCS-based approaches offer repeatability, a level of automation and consistency resulting from the 
adoption of ISO standards (19144-2).

GIS technology was used to develop the Secondary Sampling Units (SSUs). These were derived by splitting the EAs 
into land units of 40 ha each based on the image interpretation of boundaries to match the assigned number of SSUs. 

Sample selection was based on a two-stage process: PSUs (EAs) were proportionally allocated to strata and sample 
EAs were then selected in each stratum on the basis of probability proportional to size (PPS; that is, the assigned 
number of SSUs in the EA). SSUs were only generated within the selected PSU. For the 2009 survey, in the chosen 
EA, two “segments” were selected by random sampling. Image maps of the selected segments were produced to 
support the ground survey conducted by the enumerators.

 

8.4.2. 	Example 2: Pakistan – Crop Reporting Services
The Crop Reporting Service (CRS) of Pakistan provides an example of a comprehensive service working under the 
Secretary of Agriculture to provide crop information to the Pakistani Federal Government and Federal Bureau of 
Statistics, provinces, the Punjab Bureau of Statistics, universities, agricultural researchers, the Agriculture Extension 
Food Department, and other bodies. The approach has evolved, from being originally based on revenue surveys 
to the current conduction of area frame surveys supported by geospatial processing and remote sensing. The CRS 
was organized at the provincial level and supported by statistical officers at tehsil level, with statistical assistants 
and crop reporters working in area frame villages. The service employs 1 611 professional staff with degrees in 
statistics, economics and mathematics and operates in Punjab, Sindh, Khyber Pakhtunkhwa and Baluchistan. The 
CRS receives proportional provincial normative finance based on the size of the individual provinces in which it is 
active; this is supplemented by project-level activities. 

Capacity development is part of the programme, with refresher courses at the beginning of the rabi and kharif seasons 
provided by the former Ministry of Food and Agriculture or by the federal and provincial bureaus of statistics.

The methods, tools and techniques have evolved since the early opinion surveys run by the Revenue Department, 
which were conducted until the mid-1950s. Subsequently, crop cutting was used as the basis for estimation of crop 
yields. The Ministry of Food and Agriculture and the Federal Bureau of Statistics developed a statistics-based sample 
frame for crop area and yield estimation. This was based on land revenue records for 1973–1974 acquired from the 
Land Revenue Department in 1978. This data provided the basis for stratification, with administrative boundaries as 
the PSUs stratified by village size classes. From 20 to 40 villages were selected in each district in wheat producing 
areas to provide the Wheat Frame. This approach was subsequently extended to other cropped areas as the Village 
Master Sample. The sampling structure was developed by the Federal Bureau of Statistics and subsequent surveys 
were undertaken by the CRS within the province. 

This system was applied to cover cotton (550 villages), sugarcane (450 villages) and rice (550 villages). One crop 
reporter (frontline person) was stationed in one or more area frame villages to carry out seasonal field surveys and 
report the crop area sown under crops from these surveys. The crop yield was estimated from three random samples, 
each of which was replicated twice. These estimates were used to work out crop area and yield at district level. The 
area for the initial crop production forecast was taken from the CRS. However, for final estimation, the crop area 
was acquired from the Revenue Department and the yield was taken from the CRS. 
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Currently, the overall system presents a combination of objective and subjective techniques. Subsequent development 
of the sample frame in 2004 by the FBS (Federal Bureau of Statistics) was based on a multiple cropping area frame 
that included wheat, cotton, rice, sugarcane and maize. A sample frame for small-acreage crops (such as mango, 
citrus, potato, gram, moog lentil and mash) was developed with the former Federal Ministry of Food and Agriculture 
in the late 1990s.

Table 5. Techniques for identification of crop coverage.        

Technique Type Season Crop covered

Objective

Rabi Wheat, gram, potato, lentil, onion, oilseeds, maize spring, citrus

Kharif
Cotton, rice, sugarcane, maize autumn, sesamum, guarseed, moong, 
mash, groundnut, mango

Subjective

Rabi
Barley, matter pulses, tobacco, garlic, chillies, tomato, turnip, banana, 
guava, dates, grapes, rabi, fodders, rabi condiments and other rabi fruits, 
vegetables and pulses

Kharif
Bajra, jowar, turmeric, oilseeds, other Kharif pulses, lady finger, Kharif 
fodders, other Kharif fruits and vegetables

8.4.3. 	Example 3: Pakistan – the SUPARCO/FAO operative geospatial unit 
FAO and SUPARCO have been jointly developing a new integrated Agricultural Information System (AIS) at 
federal level, supported by remote sensing and geospatial technologies and dissemination tools. The objective is to 
develop a consolidated, reliable and timely method of delivering a unified official set of agricultural statistics. The 
programme has developed a robust system for crop area estimation, area frame development and procedures for 
distributing agricultural statistics to stakeholders and decision-makers. 

Crop area estimation is based on the image processing of satellite data acquired for a specific time, the conduction 
of ground truth surveys during cropping season, the collection of crops signature, the execution of laboratory 
processing, and an assessment of accuracy assessment. These activities are supported by the SUPARCO receiving 
station facilities. Countrywide acquisition of satellite imagery is undertaken done for rabi (spring) and kharif 
(autumn) crops, twice at the following stages:
•	 First, at four weeks after the completion of sowing (June–July for kharif crops and December–January for rabi 

crops);
•	 Second, at eight weeks after completion of sowing (August for kharif crops and February for rabi crops).

Extensive groundtruthing was undertaken with the support of real-time GPS navigation. Field sample classifications 
were used to supervise the maximum likelihood classification of the multidate imagery acquired using ERDAS 
image processing software.

Area frame development was based on remote sensing and GIS processing from imagery acquired from February 
and September, and was used to develop the strata based on vegetation intensity and visual interpretation of land 
cover into ten classes. Pakistan was divided into ten zones, of which 4 were in Punjab, 2 in Sindh & Khyber 
Pakhtunkhwa and 1 in Baluchistan. The sampling strategy assigned PSUs and SSUs. The SSUs were assigned 
serpentine numbering and used to ensure spatial distribution across the zones identified. Twenty to thirty segments 
of 30 ha approximately each were selected across each stratum, for a total of 379 segments in each region.  
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Based on the area frame sample design, Raising Factors (RFs) were developed to estimate the crop area sown in 
each stratum in each zone. The RF values helped to determine the crop area sown under various crops, by means 
of a statistical design. A critical examination of the data generated was made by a team of experts in the fields of 
agronomy, remote sensing and statistics to standardize the technique through image classification and historical 
trend lines. Dissemination of information is a key component of the SUPARCO/FAO satellite-based crop monitoring 
system, with monthly crop bulletins including information on VIs depicting crop growth pattern, fertilizers and 
irrigation availability, the agro-meteorological situation during the cropping seasons and crop yield and production 
forecasts or estimates for different seasons. Bulletins are distributed in paper and online2. Within the scope of the 
programme, four distribution mechanisms and tools have been developed: the Crop Information Portal; the satellite-
driven Global Agricultural Monitoring for Pakistan (GLAM); the Mobile Agricultural Geo-Tagging Information 
System (MAGIS) and the Area Frame Sampling System (AFSS).

CROP INFORMATION PORTAL
The Crop Information Portal is a web-based, open-
source platform developed to support the analysis 
and dissemination of Pakistan’s crop data and related 
climatic, agronomic, hydrologic and economic 
variables. 
The Portal allows for the advanced filtering of the data 
archive based on a combination of user-defined spatial 
and temporal parameters, to focus on specific crops, 
agronomic or environmental factors, which are stored 
into the system to produce standard outputs such as 
summary tables, maps, charts and user-defined reports. 
The portal integrates other records for water, fertilizer, 
agrometeorological information, market prices and 
crop status modules to support the broader agricultural 
information system.
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2    http://suparco.gov.pk/webroot/pages/pak-scms.asp.
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MAGIS 
MAGIS is a mobile-based application developed to 
support Pakistan’s CRSs and their crop reporters in 
improving data collection efficiency as related to the 
list frame.
MAGIS enables the collection of digital and 
georeferenced data in the field and relays these data 
via cellular phone network or the Internet to the central 
MAGIS server at the CRS head office, and makes it 
accessible to statisticians for further analysis and 
reporting.
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The benefits of implementing a remote-sensing-supported crop estimation system include:
i.	 The creation of rigorous agricultural and rural survey methods and tools, which increase the quality (timeliness, 

precision, accuracy, reliability and cost-effectiveness) of the sampling effort and results in Pakistan at the 
provincial level and which improve the overall national estimation of crop acreage, yield and production.

ii.	 The development of human resources and technical capacities in four regional CRS units and two major 
agricultural universities in the utilization of new remote sensing and geospatial technologies, and statistical 
methods for data collection and for production of agricultural statistics and dissemination of crop information.  
The CRS provincial units are capable of operating effective crop monitoring services.

iii.	 Integration of mobile applications into the crop monitoring workflow, which provides significant new 
capacities for in-field data capture and measurement improvements, data validation and CAPI interviewing 
capabilities. The back-end synchronization of data allows for remote operation and rapid record validation and 
postprocessing.

iv.	 Development of a customized web-based information analysis and data delivery system and creation of a single 
relational database for crop assessment, for use by CRS crop analysts.

v.	 Demonstration of how cooperative use and sharing of field data, imagery data, and derived data enhance 
crop estimation and forecasting to serve as a knowledge base for other entities in Pakistan contemplating the 
integration of remote sensing, GIS, area frame, and related practices into their agricultural statistics.

vi.	 Development of protocols and procedures to address potential future decommissioning or introduction of new 
satellite platforms, as well as modifications to data configurations to ensure the continuity of operations or 
reasonable transition or migration.
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8.4.4. 	Example 4: Bangladesh – an operational geospatial unit
This example illustrates the multiple possible uses of data created for purposes other than crop monitoring, which 
– through collaborative actions – make available a satellite-derived national land cover map suitable for area frame 
construction and support to crop reporting. Such initiatives enhance the cost-effectiveness of the crop reporting 
activities. 

FAO, together with private organizations, governmental institutions and universities in Bangladesh, is developing 
a national land cover data set to be used as a baseline product for several applications, including environmental 
monitoring and assessment of potential agriculture productivity within the context of research on the impact of 
various climatic scenarios. 

The stages to create a land cover data set include the development of technical and human resources:
•	 Capacity-building 
•	 Team definition and roles
•	 Legend definition 
•	 Satellite image selection and acquisition
•	 Image preprocessing
•	 Object-based segmentation
•	 Interpretation
•	 Quality control and final release

8.4.4.1. Training
Training and capacity development, supported by FAO, included the development of a new land cover legend using 
the Land Cover Meta Language (LCML) ISO standard and the Land Cover Classification System (LCCS3) tool, as 
well as a workshop to produce a National Reference System against which to define the overall reference land cover 
classes and attributes necessary to identify the land cover legend for Bangladesh. Professionals from various local 
institutions participated in the workshop, including representatives of the Bangladesh University of Engineering and 
Technology (BUET), the Center for Environmental and Geographic Information Services (CEGIS), the RIMS unit 
of the Forestry Department of Bangladesh, the Bangladesh Society of Geoinformatics (BSGI) and the Bangladesh 
Space Research and Remote Sensing Organization (SPARRSO).

8.4.4.2. Team definitions
National land cover mapping is a complex task that requires the establishment of a number of groups with specific 
competences and skills. The list of units that have been identified are the following: 
i.	 A geospatial (GIS) unit; 
ii.	 Photointerpreters; 
iii.	 A technical support unit; and 
iv.	 A quality 

The GIS unit is responsible for all activities relating to the management, storage, analysis and dissemination of 
the geospatial information requested and produced during the development of the land cover product. It provides 
support to the photointerpreters for editing and other GIS-related tasks and for managing the ancillary information 
required for image analysis, including support on the available satellite imagery.
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The photointerpreters undertake the majority of the land cover mapping. Supervised by a technical leader, they 
are responsible for the visual or semiautomatic classification of the imagery, to code it to the land cover polygons 
generated by the segmentation process. 

The technical support team is responsible for providing training and support to the technical supervisor and to the 
photointerpreters. The team provides technical solutions and workflow productivity.

The quality control team is responsible for critically reviewing the interpretation of the land cover. It can comment 
upon or reject the interpretation.

In addition to these units, IT support is required to manage the hardware, software, backups, licenses and any other 
related issues.

8.4.4.3. Legend definition 
Legend definition is a critical component of the process and is based on a number of criteria: 
i.	 Availability and quality of satellite imagery procured, and ability of photointerpreters to distinguish individual 

classes; 
ii.	 Availability of ancillary information (such as field surveys and data sets from other mapping projects);
iii.	 Representativeness of the classes in the country; and
iv.	 Requirements of the specific classes for the product’s overall objectives and intended applications.

The land cover classes have been identified from an analysis of the diagram of the National Reference System. The 
classes identified are then described using the LCML ISO standard.

8.4.4.4. Satellite image selection and acquisition
The selection of the image satellites to be used for land cover mapping requires a number of factors to be balanced: 
the available budget, the quality of images across the year, and the land cover classes to be identified. For Bangladesh, 
the main cropping season occurs during the monsoon season, which is heavily affected by clouds. Interpretation 
of the drier season facilitates the interpretation of natural and cultivated woody vegetation, which clearly stands 
out from bare non-vegetated land. For this reason, a combination of high-resolution optical imagery (SPOT6/7 at 
a spatial resolution of 6 m) in the dry season and multitemporal radar imagery (Sentinel-1) SAR data for the rainy 
season have been selected, as they are unaffected by meteorological conditions. 

8.4.4.5. Image preprocessing

Image preprocessing was required to prepare the images accessed for further analysis. This includes band 
composition, image mosaicking, re-projection, format changes, and changes in pixel depth. It also includes 
techniques for image enhancement and cloud and noise removal. The processing requirements for SAR imagery 
were different from those for optical sensors, thus requiring extended processing skill sets.
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8.4.4.6. Object-based segmentation
The preprocessed images were segmented with a multiresolution algorithm to generate a layer with unclassified 
vector polygon objects. In this step, the most critical factor was the selection of the segmentation parameters used 
by the algorithm to apportion and segment the input images. There were no specific settings to suggest, because 
these depend on many factors and require several tests to be conducted until the objects to be identified have been 
segmented to provide the level of resolution and discrimination associated with the classification legend. 

8.4.4.7. Interpretation
Interpretation is the phase during which photointerpreters assign land cover codes to the polygons. This time-
consuming task was carefully planned and monitored to ensure standardized interpretation in case manual techniques 
are applied. A preliminary automatic interpretation based on the spectral and shape characteristics of the objects 
and on training data sets of classified areas may be used to run supervised classifications. A multitemporal analysis 
was conducted to extract averages values within each object (such as NDVI values) that can be used in statistical 
clustering techniques to select similar vegetation patterns.

8.4.4.8. Quality control and final release
The accuracy assessment was based on a series of checkpoints at which the classification and quality control 
procedures were verified across the entire interpretation process, to ensure that the land cover data set met the 
quality results and consistency expected. The final structuring of the data set was applied, including metadata and 
data documentation.

8.4.5. 	Example 5: Rwanda – multipurpose probability sample surveys
Based on VHR (0.25m) orthophotographs, the National Institute of Statistics of Rwanda (NISR) has designed and 
implemented multiple frames for the country (spanning an area of 26 000 km2), combining an area frame and a 
list frame to support the national agricultural statistics. The multiple frame accommodates 560 specialized farms 
producing commodity crops that are significant in terms of national economic agricultural estimates. The specialized 
farms are added as a list frame and are fully enumerated, and therefore do not contribute to sample errors; they 
are also included in the area frame. The importance of standardized terms (such as “farm”, “farm parcel”, “field”, 
“farmer”, “hired manager” and “respondent”) are emphasized in terms of consistent agricultural surveys and have 
employed FAO ontologies (FAO, 2015).

The first stage in the survey design is to define the objectives of the agricultural survey, to ensure that the required 
levels of accuracy may be reached. Typically, questions that support the design include:
i.	 What are the objectives and expectations of the survey?
ii.	 What definition of “farm” is used?
iii.	 Which agricultural variables should be surveyed, and over which time scales and periodicity (for example, 

seasonality)?
iv.	 Which agricultural commodities surveys are considered inadequate and therefore the focus of the new survey?
v.	 What are the required levels of accuracy?
vi.	 At what level will the data be summarized: country, state, region, watershed, etc.?
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The objective of the Rwandan survey was to provide a national, seasonal and multipurpose (crop, livestock, forest 
and commodities) agricultural survey, covering a range of variables for each farm:
i.	 Planted and harvested area, area intended for planting, potential and actual crop yield of each crop or variety 

of crop, crop production and number of trees;
ii.	 Livestock and poultry inventories (for example, number, type, age, sex, breed and use);
iii.	 Production of milk, eggs, honey and seeds;
iv.	 Number and types of farming methods and agricultural inputs, including labour, type and quantity of seeds, 

fertilizers and pesticides, source of irrigation water, drainage, extent of shifting cultivation, stocks, machinery, 
equipment and agricultural buildings;

v.	 Number and types of farms (for example, number, location, legal status and land tenure);
vi.	 Costs of production and value of sales;
vii.	 Population involved in agriculture (such as the basic demographic characteristics of the farmer, farmer’s 

household members working on the farm, hired workers on the farm, and days of work).

The area frame was based on the land use strata within the 30 districts; the strata were subdivided into non-
overlapping “segment” sampling units (SUs), each of which was subdivided into non-overlapping tracts. A tract 
was defined as the land area of a farm inside a segment, or the land area that does not belong to any farm. The 
total survey area was entirely subdivided into non-overlapping tracts. The segments and tracts used recognizable 
physical boundaries or fields to support unambiguous identification by the enumerators. The survey reporting unit 
for each variable consisted in the farm tractor non-farm tracts. The Rwandan probability sample survey was based 
on a stratified cluster sample survey that used a systematic sample drawn from PSUs combining an area frame and 
a list frame of specialized farms (a multiple frame). Enumeration was by interview, using paper forms to collect the 
abovementioned variables. The interview covers selected tracts, disregarding those of non-agricultural land (for 
example, wasteland or water); it is intended to add CAPI survey tools and GPS to support data collection.

Area frame construction can be based on different land use strata (proportion of cultivated land, special agricultural 
practices, predominance of certain crops, and average size of cultivated fields) with boundaries that can be located on 
the ground. Within each stratum, the PSUs are ordered by similarity and selected on the basis of PPS; within the PSU, 
segments are selected with equal probability. The measured area of each PSU was used to determine the total number 
of SSUs in each stratum and in the entire frame, without the need to map each segment. Orthorectified photographs 
(printed at a scale of 1:1 000) for each segment selected were used to identify and measure agricultural areas by the 
enumerators; however, they are not currently used in digital format in the field. The areas of the fields within the 
questionnaire surveys may be provided by farmers during interviews or drawn on the photographs, although more 
accurate assessments of the field areas may be achieved by mapping against the orthophotography combined with 
mobile GIS technology. The supervision of the survey was facilitated by the area calculations based on the imagery.
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The design of the area sampling frame was used to provide formulae for the direct expansion and variance 
calculations for the closed, weighted and open segment estimators. The area sample design ensured that the total 
number of segments was known for each strata and PSUs and that the probability of selection of each segment was 
equal to its conditional probability in two-stage sampling. The direct expansion sample estimate of a total for each 
survey variable was based on the formula:
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multiple frame). Enumeration was by interview, using paper forms to collect the 
abovementioned variables. The interview covers selected tracts, disregarding those of non-
agricultural land (for example, wasteland or water); it is intended to add CAPI survey tools and 
GPS to support data collection. 

Area frame construction can be based on different land use strata (proportion of cultivated land, 
special agricultural practices, predominance of certain crops, and average size of cultivated 
fields) with boundaries that can be located on the ground. Within each stratum, the PSUs are 
ordered by similarity and selected on the basis of PPS; within the PSU, segments are selected 
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of SSUs in each stratum and in the entire frame, without the need to map each segment. 
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to identify and measure agricultural areas by the enumerators; however, they are not currently 
used in digital format in the field. The areas of the fields within the questionnaire surveys may 
be provided by farmers during interviews or drawn on the photographs, although more accurate 
assessments of the field areas may be achieved by mapping against the orthophotography 
combined with mobile GIS technology. The supervision of the survey was facilitated by the 
area calculations based on the imagery. 

The design of the area sampling frame was used to provide formulae for the direct expansion 
and variance calculations for the closed, weighted and open segment estimators. The area 
sample design ensured that the total number of segments was known for each strata and PSUs 
and that the probability of selection of each segment was equal to its conditional probability in 
two-stage sampling. The direct expansion sample estimate of a total for each survey variable 
was based on the formula: 
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Yc  = sample estimate of a total for the survey variable y 
S  = set of all land-use strata 
Bh  = set of all substrata in stratum h 
Ghj  = set of all segments in substratum j of land-use stratum h 
Thjk  = set of all tracts in segment k of substratum j or land-use stratum h 
ehjk  = expansion factor for all tracts in segment k 
thjkm  = tract value for the variable y associated with tract m 

	8.5.	Conclusion	
Remote sensing applications and their integration with GIS have made crop monitoring 
operations simpler, quicker and more accurate. The integration of these techniques and data 
into area sampling frame construction, stratification, and field data collection procedures is 
changing the way in which crop estimation tasks are executed. The multipurpose use of 
remotely sensed imagery and the generation of derived products within agricultural statistics, 
such as land cover maps, enables effective and cost-efficient processes to integrate satellite 
data into crop area and yield estimation activities. The use of such data in agricultural statistics 
relies on a set of fundamental organizational aspects, resource and thematic image processing 
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Yc	 = sample estimate of a total for the survey variable y
S	 = set of all land-use strata
Bh	 = set of all substrata in stratum h
Ghj	 = set of all segments in substratum j of land-use stratum h
Thjk	 = set of all tracts in segment k of substratum j or land-use stratum h
ehjk	 = expansion factor for all tracts in segment k
thjkm	 = tract value for the variable y associated with tract m

8.5. Conclusion

Remote sensing applications and their integration with GIS have made crop monitoring operations simpler, 
quicker and more accurate. The integration of these techniques and data into area sampling frame construction, 
stratification, and field data collection procedures is changing the way in which crop estimation tasks are executed. 
The multipurpose use of remotely sensed imagery and the generation of derived products within agricultural 
statistics, such as land cover maps, enables effective and cost-efficient processes to integrate satellite data into crop 
area and yield estimation activities. The use of such data in agricultural statistics relies on a set of fundamental 
organizational aspects, resource and thematic image processing efforts, sampling activities, field data collection, 
and geospatial and statistical competencies. It also relies on collaboration between the agencies responsible for the 
components that make up the agricultural monitoring and reporting community, including the statistical services, 
mapping agencies, satellite agencies and thematic user agencies. Integrated programmes such as Pakistan’s AIS 
and related developments, provide examples of coordination of the image processing, sampling and field survey 
support and dissemination of information to users and comprehensive interfaces for decision-makers. Collaborative 
programmes with multiple objectives further support the use of satellite imagery and the potential to use image 
analysis for wider area assessment, also covering conditions such as natural hazards (including floods, drought and 
landslides) and their impact on crop production. 
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Chapter 9

The cost-effectiveness of remote 
sensing in agricultural statistics
Jacques Delincé

The cost-efficiency of using remote sensing in agricultural statistics is best evaluated by comparing the gains 
obtained (usually expressed as a reduction of sampling variance) to the additional costs involved (cost of imagery, 
data analysis, staff training, and investment in hardware and software). Noteworthy solutions in this respect are 
suggested by Carfagna (2001, 2013), Nelson et al. (2007), Tenkorang and Lowenberg-DeBoer (2008), Miller et al. 
(2012), Gallego (2014) and Delincé (2015).

9.1. The issue of costs 

The costs relating to the use of remote sensing can be broadly divided into two categories: the costs of image 
purchase and the costs arising from data treatment (purchase and maintenance of hardware and software, recruitment 
of staff, and training). Hardware and software costs have drastically decreased in recent years because open-access 
software is now widely available. With cloud-based image analysis having become a standard, low-cost personal 
computers and disk storage allow for the analysis of very large image data sets. However, attention must be paid 
to staff availability and competence (Latham, 2017). Expertise in Geographic Information Systems (GIS), image 
analysis, statistics, yield modelling, agrometeorology, soil science and crop science will require a team of specialists 
possessing the relevant multidisciplinary qualifications, training and experience. The majority of costs will be 
incurred in this respect.

9
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Currently, high-, medium- and low-resolution imagery is freely available in raw format and as derived products, such 
as geometrically (RMS 1.5 pixels) and radiometrically (top of atmosphere) rectified imagery, vegetation indices, 
regional or country mosaics, and periodic cloud-free coverage. Thanks to initiatives undertaken by the National 
Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey (USGS) and the European Space 
Agency (ESA), vast real-time freely accessible depositories allow for downloading or online processing of what the 
United Nations Security Council considers to be the Big Data challenge (2015). The most important websites are: 
•	 Google Earth Engine (GEE), at https://earthengine.google.com/, for real-time data from MODIS, Landsat, 

Sentinel-1, 2 and 3, as well as archive Globeview/Airbus very high resolution (VHR) imagery
•	 USGS Earth Explorer, at http://earthexplorer.usgs.gov/, for Landsat/MODIS data
•	 USGS WELD, at https://landsat.usgs.gov/WELD.php, for archive Landsat 7 and 5 data
•	 Australian Geoscience Datacube (AGDC), at http://www.datacube.org.au/, covering Australia only
•	 ESA data hub, at https://scihub.copernicus.eu/, from which Sentinel 1, 2 and 3 data can be downloaded
•	 JRC-SPIRIT database, at http://spirits.jrc.ec.europa.eu/download/downloaddata/,    containing worldwide ten-

daily agrometeorological data from ECMWF, CHIRPS and TAMSAT
•	 FAO-GIEWS METOP/AVHRR indicators – in particular, the Agricultural Stress Index (ASI), at http://www.

fao.org/giews/earthobservation/asis/index_1.jsp?lang=en 

Only VHR imagery with a ground sampling distance (GSD) lower than 5 m should be purchased. The offers of the 
following three providers are based on a satellite constellation: Rapideye, with a resolution of 5 m and four bands at 
a price of US$1/km2; AIRBUS-SPOT with a resolution between 2 m and 8 m, and five bands at a price of US$3.5/
km2; and Worldview, with a resolution of 31 cm and eight bands at a price of US$20/km2. In addition, since 2010, 
newcomers to the market such as Terra bella, Planet, Satellogic and Blacksky Global have been operational with 
flocks of “microsatellites” targeting a multispectral resolution of 1 to 2 m; however, to date, they have not succeeded 
in offering sufficiently competitive prices.
Readers seeking a more detailed description of the characteristics and prices of sensors may find a complete review 
in Delincé (2015, chapter 6).

9.2. The domains of application and the relative gains

Bearing in mind that remote sensing is capable of making various contributions to agricultural statistics, the cases 
to be examined will first be described briefly.
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9.2.1. 	Optimization of sampling design
The major and cheaper use of remote sensing occurs in the improvement of the sampling design of agricultural 
censuses or surveys. In these cases, the natural approach is to use recent imagery (Global Strategy, 2015) or even land 
cover maps derived from imagery (Waldner et al., 2015). At the outset, the material obtained through remote sensing 
will at least enable the creation of reference maps upon which administrative limits can be univocally located. 
•	 In a census approach, the work usually begins with a pre-enumeration mapping (the Enumeration Areas, or EAs, 

are the Primary Sampling Units – PSUs – of the census) and the identification, within the field, of households or 
holdings per EA sampled (the holdings or households are the Secondary Sampling Units, or SSUs). An efficient 
method to define EAs is the use of imagery (having a resolution from 0.5 m to 2 m) in a GIS environment, 
seeking to subdivide the entire territory into entities with physical limits corresponding to 50–100 holdings, 
such that one enumerator can collect the data relating to a subset of EAs during the census period (Geospace, 
2007). Based on projects carried out in Lesotho, Namibia, the Seychelles and the United Republic of Tanzania 
(Loots, 2015), the significant savings that may be achieved in terms of time and fieldwork largely repay the 
costs of adopting the required technology (that is, imagery, GIS, expert consultancies and training). The general 
quality of the census also improves, because of the better planning, transparency and traceability of the work; in 
addition, all of the infrastructure created can easily be reused in subsequent efforts, which is of particular interest 
if a Master Sampling Frame (MSF) approach is adopted (Global Strategy, 2015b).

•	 In a regional survey approach, the two major paths available are: (1) to define four or five strata that are as internally 
homogeneous as possible, while being as different as possible from one another, or (2) to define the PSUs of a 
two-stage plan that are as similar as possible to one another, with a minimum of internal homogeneity. Design 
complexity can be enhanced by using probability-proportional-to-size (PPS) sampling or by adding further stages. 
Regardless of the master frame selected (list, area, point or multiframe), imagery is of the utmost help to achieve the 
intended goals, because it will provide up-to-date detailed information that is suitable for modern digital treatment. 
Additionally, even a rough image classification will enable obtaining a proxy for cropping intensity that can be used 
to optimize the sizes of the sampling unit (based on spatial correlation) and variable sampling fractions (based on 
the relation between sampling variance and agricultural intensity; see Benedetti et al., 2015). 

•	 A first case to be examined is the Area Sampling Frame (ASF) of the June Agricultural Survey (JAS) of 
the National Agriculture Statistical Service of the United States Department of Agriculture (USDA/NASS). 
Traditionally, the frame consists of stratified PSUs which are composed of SSUs called “segments” (Cotter et 
al., 2010). First, all the territory is divided in PSUs with physical boundaries, through visual interpretation of 
satellite imagery (with each PSU being composed of six to eight segments). The PSUs are then stratified into 
agricultural classes intensity by photointerpretation. Finally, after samples have been extracted from the PSUs, 
the PSUs selected are subdivided into segments (the size of each being comprised within 2.5 to 21 km2). One 
segment is randomly selected per PSU sampled; therefore, the final JAS sample consists of approximately 11 
000 segments (with the sampling fraction being of 0.2 percent). This approach, which Boryan et al. (2016) call 
“traditional”, requires a total of 30 man-months of work per state. Recently, NASS has adopted an automated 
approach based on PSU delineation and stratification by automatic classification of the previous year’s Crop 
Data Layers (CDLs). Therefore, the automatic approach now requires only 12 man-months of work per state, 
thereby decreasing the cost by a factor of 2.5. Computed on the 2013 South Dakota survey (which comprised 
578 segments and a coverage of 199 730 km2), the traditional JAS frame has been compared to the automated 
frame, the survey data of which were simulated in two ways: first by extracting the segment land use from the 
declared Farm Service Agency’s Common Land Unit (FSA-CLU); second, by extracting the land use from the 
CDL 2013 (Common Land Unit Crop Data Layers, or CLU-CDL).
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Table 1. �2013 South Dakota Traditional Stratification (TS) versus Automated (AS) 
Stratification: Crop Estimates Comparison.

Crop

NASS
Estimate
(million ha)

Acreage
Difference
TS and AS CLU-
FSA
(%)

TS
JAS
CV (%)

AS
CLU-FSA
CV (%)

AS
CLU-CDL
CV (%)

Corn 6 200 000 6.74 4.9 4.3 3.9

Soybean 4 600 000 19.03 5 6.0 5.2

Spring wheat 1 190 000 47.10 17.6 14.3 13.3

Winter wheat 1 400 000 46.34 17.9 16.8 19

Boryan et al., 2016

In both cases, the resulting sampling variances were of the same order of magnitude. However, it should be recalled 
that the costs of building the frame were divided by 2.5.

•	 This could be compared with the costs to be sustained in less developed countries when the traditional NASS 
methodology is used. For example, Morocco renewed its area frame over 66 900 km2 using SPOT 5 imagery at 
a resolution of 2.5 m. For a subset of 18 provinces (covering an area of 49 000 km2), access was available to a 
sample of 810 segments the sizes of which ranged from 4 to 30 ha (for a sampling fraction of 0.1 percent), leading 
to a relative precision of 1.8 percent for the acreages of cereals (1 950 000 ha), 4.1 percent for fallow land (650 
000 ha) and 16.3 percent for pasture land (120 000 ha). It must first be noted that with a lower sampling fraction, 
the survey conducted in Morocco presents CVs that are two times lower than those of NASS for a similar crop 
extent. NASS uses imagery with a resolution ranging from 20 to 56 m, while in Morocco, the resolution is of 2.5 
m and the total stratification efficiency for cereals amounted to 3, it may be seen that the type of imagery can be 
an important factor to consider when building a frame. From the point of view of costs, the stratified area frame 
construction amounted to US$7/km2 for the creation of the land use maps (50 percent for SPOT imagery, 15 
percent for photointerpretation and 35 percent for field validation). The sample extraction costs were marginal 
because the dedicated GIS software cost US$20 000 and the time required amounted to ten days per province.

•	 Another comparison can be drawn with the area frame used by China’s National Bureau of Statistics in ten 
provinces (covering 1 652 083 km2) using a stratified two-stage sampling design with PPS selection in the first 
stage (the size of each PSU ranging between 1 km2 and 5 km2) and random selection in the second stage (each 
SSU having a size between 2 ha and 5 ha, with a total sampling fraction in the order of 0.2 percent). For Anhui 
province (139 400 km2), a sample size of 6 000 segments leads to a CV of 1.3 percent for wheat (2 200 000 
ha), of 0.9 percent for middle rice (1 900 000 ha) and of 3 percent for corn (1 000 000 ha). The good level of 
precision obtained results from the stratification and from the PPS sampling, based on the classification of GF1 
and ZY3 Chinese satellite imagery (with a resolution of 2 m). The associated costs amount to US$75 000 per 
province, and therefore approximately US$0.5/km2.

•	 Frame creation and stratification can also be based on a Point Sampling Frame, making use of the satellite 
imagery available:

�� The Land Use and Cover Area Frame Survey (LUCAS), which was initiated over Europe in 2001, 
provides the opportunity to evaluate the advantages of stratification over imagery by comparing the 
initial systematic plan with the stratified plan used in 2006 (Gallego, 2007). For the area of EU cereals, 
the relative efficiency gain (resulting from the stratification itself and from the varying sampling 
fractions) amounted to 1.76; for common wheat and for barley, 1.64; for corn, 1.70; for potato, 1.44; 
for sugar beet, 1.60; and for sunflower, 2.01. Considering that the stratification was based on imagery 
available free of charge (aerial orthophotographs created for the Integrated Administrative Control 
System’s Land Parcel Identification System (IACS LPIS) and the photointerpreter was able to analyse 
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approximately 500 points per day (1 million for the entire EU, which at the time comprised 25 Member 
States), it may be considered that the costs of the stratification amounted to approximately US$200 
000 for a survey the annual cost of which was in the order of €3.5 million. Even if the multiannual use 
of the frame is not considered, dedicating 5 percent of project expenditure to image analysis is largely 
repaid by the reduction in the variances, ranging from 30 percent (potato) to 50 percent (sunflower).

�� Haiti is another case study in which it is possible to evaluate the costs and benefits of using 50-cm 
resolution archive aerial photographs for establishing a point area frame. Approximately 1.7 million 
points located on a 125-m grid were photointerpreted (in 3 400 working days), enabling the creation of 
a stratified sample of 25 000 points (each representing approximately 1 km2). Conceived to be used for 
ten years, the additional cost of using imagery-based stratification amounted to 2 percent. However, it 
provided a decrease in variance by 8 to 38 percent for major crops, which illustrates the cost-efficiency 
of remote sensing for stratification in Haiti. 

9.2.2. 	Crop Data Layers (CDLs)
CDLs were created by USDA/NASS 20 years ago. Described as costing US$75 000 per state in 1997, it has 
drastically improved over time in terms of the number of crop categories, map accuracy, dissemination tools and 
elaboration costs. Muller and Harris (2013) describe in detail the 2011 CropScape portal in terms of coverage (48 
states), technical aspects (imagery and ground reference data) and the list of products, as well as the user community. 
Approximately 5 000 Landsat, Resourcesat and DMC scenes (available for free or at a low cost, lesser than US$0.10/
km2) are classified every year and result in a CDL (with a scale of 1:100 000) which is distributed draft in August 
and frozen in February after harvest. The image processing and integration is based on ERDAS, See5, ArcGIS and 
SAS. CropSpace was developed externally (Yang, 2014) requiring 15 man-months for its development. It runs on 
two servers (32 GB and 1 TB of disk space respectively) under Apache, Tomcat, Mapserver, GDAL and PostgreSQL 
software. Although NASS does not release much information on the project’s running costs, it clarifies that this 
public good meets the needs of the private agribusiness sector (in particular, relating to insurance, decision support 
and financial services).

9.2.3. 	Improved estimators
At estimation level, merging data from the ground survey and from satellites is usually achieved through regression 
or calibration estimators (Global Strategy, 2015a).  Gallego et al. (2014) present detailed results for a northern 
region (78 500 km2) of Ukraine, containing 2.45 million ha of cropland. Ninety 4 km x 4 km square segments were 
field-surveyed in 2010 (with a sampling fraction of 1.8 percent and a field size up to 250 ha). Later, the entire region 
was covered with MODIS, Landsat5, AWiFS, LISSIII and Rapideye imagery. Image classification was trained on 
data collected along the road, independently of the area frame segments. For the major crops (wheat, barley, maize 
and soybean), the respective mean efficiencies amounted respectively to 1.59, 1.54, 1.48, 1.50 and 1.50; therefore, 
the sensors’ performance was approximately equal. Comparing the cost of the field survey and the cost of imagery 
(today, the cost of image classification is so low that it can be set aside), the situation changes drastically, because 
only the two free-of-charge sensors (MODIS and Landsat TM) remain cost-effective, as the purchase price of the 
other three sensors make them inefficient (AWiFS 0.92, LISIII 0.43 and Rapideye 0.18). Some comments should 
be made to provide a general context to the study. First, field size in Ukraine tends to be large, allowing for coarse-
resolution sensors to compare with finer-resolution ones in terms of classification accuracy. This would not hold 
in most African or Asian countries, where fields tend to be small. Second, this study relied only on the Maximum 
Likelihood Classification (MLC) method. Today, the USDA relies on the decision-tree classification method (See5); 
ESA, after testing various algorithms (support vector machines, decision trees, gradient-boosted trees and random 
forests) on 12 sites around the world (Inglada et al., 2015) will apply a random forest algorithm to its Sentinel-2 
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data delivery services. Finally, the availability of freely accessible imagery is increasing: not only are MODIS (250-
500m) or Landsat 8 (15-30m) rectified or classified products (with resolutions in the range of 250 m to 500 m, and 15 
m to 30 m, respectively) freely downloadable in near-real-time; also Sentinel 1 (SAR-GRD, 9-m resolution), Sentinel 
2 (10-m resolution) and Sentinel 3 (300-m resolution) are now available from the ESA hub or Google Earth Engine.

9.2.4. 	Crop monitoring and yield forecast 
Crop monitoring and yield forecast is usually performed using a recognized crop modelling system, such as DSSAT1, 
BIOMA2, APSIM3, ORYZA4, STICS5, CERES6, CROPSYST7 or EPIC8, many of which form part of the AGMIP9 
project (Rosenzweig et al., 2013). The choice of model depends mainly on the crops of interest, the region concerned 
and the open-access nature of the model. In any case, all models rely on the availability of:
•	 Administrative limits (GADM, at http://www.gadm.org/); 
•	 Agro-ecological zoning (GAEZ, at http://gaez.fao.org/Main.html#); 
•	 Cropland masks (Global Food Security Area Database at a resolution of 1 km: http://e4ftl01.cr.usgs.gov/

provisional/MEaSUREs/GFSAD/; a Unified Cropland Layer at 250m: http://maps.elie.ucl.ac.be/geoportail/); 
•	 Crop parameters (ECOCROP at http://ecocrop.fao.org/ecocrop/srv/en/home); 
•	 Soil database (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-

database-v12/en/); 
•	 Real-time and archive agrometeorological databases (temperatures from GSDO: https://data.noaa.gov/dataset/

global-surface-summary-of-the-day-gsod; radiation MERRA2 from http://disc.sci.gsfc.nasa.gov/datareleases/
merra_2_data_release; rainfall from CHIRPS http://chg.geog.ucsb.edu/data/chirps/, SPIRIT – http://spirits.jrc.
ec.europa.eu/download/downloaddata/ – or from FEWS: http://earlywarning.usgs.gov/fews or http://www.isac.
cnr.it/~ipwg/data/datasets.html); 

•	 Real-time and archive vegetation indices (METOP at http://www.eumetsat.int/website/home/Data/index.html; 
MODIS at http://modis.gsfc.nasa.gov/data/dataprod/mod13.php; or SEN3/VEG at http://land.copernicus.eu/
global/products/ndvi); and 

•	 Local management practices (available in the AMIS crop calendar, at http://www.amis-outlook.org/ or http://
www.usda.gov/oce/weather/pubs/Other/MWCACP/). 

Considering that most of the space products for yields monitoring are available free of charge, the costs will mainly 
derive from the running costs of the monitoring system itself and in the estimation of crop acreages. 

Considering India’s Mahalanobis National Crop Forecast Centre (http://www.ncfc.gov.in/), it may be seen that to 
issue periodical forecasts for eight crops, an annual budget of US$1.7 million is necessary to meet the costs relating 
to the offices, salaries (of 31 staff members), field surveys (10 percent of the total budget), imagery (20 percent of 
total budget), hardware (19 workstations) and software (ERDAS, ARCGIS, GEOMATICA STAT licenses).  

Another example is CROPWATCH (http://www.cropwatch.com.cn/htm/en/index.shtml) of China’s RADI. Its annual 
budget for regional crop monitoring in China and in the major production zones worldwide (covering 31 countries 
and representing 80 percent of the world production of maize, wheat, rice, and soybean), amounts to US$1.5 million. 

1    Decision Support System for Agrotechnology Transfer Model.
2    Biophysical Models Applications Model.
3    Agricultural Production Systems sIMulator Model
4    Further information is available at http://oryza.com/.
5    Simulateur mulTIdiscplinaire pour les Cultures Standard.
6    Crop Environment Resource Synthesis Model.
7    Cropping Systems Simulation Model.
8    Environmental Policy Integrated Climate Model.
9    The Agricultural Model Intercomparison and Improvement Project.
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Manpower costs (15 persons) represent approximately 35 percent of this total budget; those resulting from imagery 
data amounts only to 20 of the budget, thanks to interinstitutional data sharing; the rental cost of computers, networks 
and software is approximately 10 percent; and the cost of fieldwork missions, academic costs, meeting and travelling 
costs, logistics, etc. is of approximately 35 percent.

9.3. 	Sensor suitability

Several examples confirm the efficiency of using remote sensing for agricultural statistics. An important factor to 
verify is whether the available satellites are adapted to the predominant sizes of agricultural fields in the various 
regions of the world. To answer this question, the data published by Fritz (2015) have been reworked. These data 
consist in a 1-km2 resolution map of cropland (arable land, permanent crops and permanent grassland) with five 
categories: no cropland, cropland with very small, small, medium and large field sizes. For cropland, the freely 
downloadable IIASA database provides a field-size interpolated map with a 1-km2 resolution. By using a country 
mask, it is thus possible to create a database providing the total number of pixels per country (country area in km2), 
the total cropland area and the area for each of the four field size classes. As these categories of field sizes are linked 
to the GEOGLAM recommendation for satellite monitoring of agriculture (see Waldner et al., 2015, table 4), it is 
easy to derive the agricultural area per country that can be monitored by satellites with a ground sampling distance 
of 100 to 500 m (MODIS, Sentinel 3), 20 to 100 m (Landsat 5, AWiFS, DMC, DEIMOS)), 5 to 20 m (Sentinel 1 & 
2), or less than 5 m (SPOT, Rapideye, LISS4, Worldview). 

Agricultural monitoring has various facets (cropland areas, crop type acreages, or yield monitoring at regional or 
field levels). This enquiry will focus on the regional acreages of major crop categories (such as cereals), of other 
arable land, of permanent cropland and of permanent grassland. 

Table 2. Area (million ha) per field size by category and region.

Region Cropland Very small Small Medium Large

Africa 773.0 242.6 394.1 110.4 25.9

Middle East 107.8 9.0 70.0 26.6 2.2

Asia 1 411.6 472.5 673.1 179.3 86.7

Central and South America 665.8 21.7 154.5 295.9 193.7

Europe 1 165.9 14.0 281.2 532.8 337.9

North America 856.7 1.9 68.0 454.5 332.3

Oceania 130.5 0.0 9.8 34.3 86.4

World 5 111.3 761.6 1 650.8 1 633.9 1 065.0

As shown in table 2, the vast majority of agricultural land falls into the small- and medium-parcel size categories. 
The very-small-parcel category occupies only 15 percent of cropland at world level; Asia and Africa are less 
favoured from this point of view, as one third of the agricultural areas of both regions fall within the very-small-field 
size category.
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Based on the above, it may be deduced that MODIS and Sentinel 3 sensors are adapted to monitoring the acreage 
of 21 percent of the world’s agricultural land, with increased possibilities in Oceania and North America. However, 
they cannot be used in Asia and Africa. For medium-resolution satellites, such as Landsat 8, half of the world’s 
agricultural acreages can be monitored; however, in this case too, Asia and Africa remain disadvantaged, with 
less than 20 percent of their agricultural areas being able to benefit from coverage. The situation is dramatically 
enhanced with the arrival of Sentinel 1 (radar) and 2 (optical). Five of the regions reach a suitability greater than 90 
percent and Africa and Asia are close to 70 percent. Total suitability is reached with VHR satellites, although they 
are unaffordable for all statistical systems under examination.

Table 3. �Satellite resolutions and relative compatible percentage of cropland 
area.

Region Spot/Rapideye Sentinel 1&2
Landsat8/

AWiFS
Modis/

Sentinel 3

Africa 100 69 18 3

Middle East 100 92 27 2

Asia 100 67 19 6

Central and South America 100 97 74 29

Europe 100 99 75 29

North America 100 100 92 39

Oceania 100 100 92 66

World 100 85 53 21

It is noteworthy that image resolution and cost are not the only limiting factors. In tropical zones, cloud coverage 
can seriously hamper the percentages reported above, except for Sentinel 1 (high-resolution) and RISAT 1 (medium-
resolution). Whitcraft et al. (2015) provide a detailed analysis of the cloud cover patterns during the agricultural 
growing season, showing, that the probability of clear view imagery remains a general concern, particularly in India 
and Southeast Asia. 
In addition, VHR satellites are not designed to obtain wall-to-wall coverage at country level, and the “stamps 
mosaics” that they deliver are very costly and time-consuming to process. In addition to its suitability scores, 
Sentinel 2 provides a swath of 290 km and a revisit cycle of five days, as opposed to the swath of 170 km and 
revisit cycle of 16 days for Landsat 8; therefore, it is necessary to mosaic three times more images with Landsat 8 
than with Sentinel 2.
Table 4 ranks African and Asian countries by percentage of cropland per parcel size categories, illustrating the ten 
easiest and ten most difficult countries in terms of making use of satellite imagery for crop acreage statistics.
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Table 4. �The most difficult and easiest countries in Africa and Asia, in terms of 
the percentage of cropland area by field size. 

9.4. Conclusion

Three main factors support the cost-effectiveness of remote sensing for agricultural statistics. The decrease in 
image prices, as free-of-charge long-term systems are secured by NASA and ESA at the resolutions required for 
crop yield monitoring (METOP, MODIS, Sentinel 3) and acreage estimation (Landsat 8, Sentinel 1 & 2). Quality is 
improving in terms of guaranteed long-term availability, image resolution (up to 10 m), frame size (up to 290 m x 
290 m), revisiting time (up to five days) and the number of radiometric channels (above ten). Finally, open-source 
applications have become the standard in GIS and image analysis, as well as in access to remote cloud processing 
tools (hardware and software, such as Google Earth Engine).

As crop yield monitoring is essential to food security and market management, it is best served by a remote sensing 
approach that guarantees the periodic and timely delivery of the yields trend while minimizing the burden of costly 
fieldwork. Long-established systems exist at national level (consider India’s MNCFC, Brazil’s CONAB, Morocco’s 
DMN, Mozambique’s DSNA, Pakistan’s SUPARCO, Senegal’s CSE, Tunisia’s CNT and VEGA-PRO in Russia) 
and global level (CropWatch, CropExplorer,  JRC-MARS, FEWSNET, FAO-GIEWS, UNEP-DEWA, WFP-VAM, 
AMIS and GEOGLAM).

Crop acreage estimation with remote sensing has also proven to attain cost efficiency. Current season imagery is 
used in the United States of America with CropScape, in Canada at AGRIFOOD, in India at the MNCFC, and in 
Pakistan with SUPARCO. Although field size remains a limiting factor in 70 countries, the opportunity remains for 
at least 125 countries to envisage a successful use of remote sensing for current-season crop acreage estimation. 
In addition, the use of archive imagery in sampling design optimization occurs in most national statistical offices, 
even when a list frame approach (both for censuses and surveys) is adopted. 
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revisiting time (up to five days) and the number of radiometric channels (above ten). Finally, 
open-source applications have become the standard in GIS and image analysis, as well as in 
access to remote cloud processing tools (hardware and software, such as Google Earth Engine). 

As crop yield monitoring is essential to food security and market management, it is best served 
by a remote sensing approach that guarantees the periodic and timely delivery of the yields 
trend while minimizing the burden of costly fieldwork. Long-established systems exist at 
national level (consider India’s MNCFC, Brazil’s CONAB, Morocco’s DMN, Mozambique’s 
DSNA, Pakistan’s SUPARCO, Senegal’s CSE, Tunisia’s CNT and VEGA-PRO in Russia) and 
global level (CropWatch, CropExplorer,  JRC-MARS, FEWSNET, FAO-GIEWS, UNEP-
DEWA, WFP-VAM, AMIS and GEOGLAM). 

Crop acreage estimation with remote sensing has also proven to attain cost efficiency. Current 
season imagery is used in the United States of America with CropScape, in Canada at 
AGRIFOOD, in India at the MNCFC, and in Pakistan with SUPARCO. Although field size 
remains a limiting factor in 70 countries, the opportunity remains for at least 125 countries to 
envisage a successful use of remote sensing for current-season crop acreage estimation. In 
addition, the use of archive imagery in sampling design optimization occurs in most national 
statistical offices, even when a list frame approach (both for censuses and surveys) is adopted.  
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Estimating and correcting the bias of 
pixel counting 
Javier Gallego 

A1. Introduction

This annex is a complement to chapter 5 for readers seeking further details on the characteristics of the main 
estimators introduced in that chapter. Additional bibliographic references are also provided, in particular for 
institutions that would consider the implementation of a system of unbiased crop area estimation with the help of 
remote sensing. 

Remote sensing has a strong potential for several different uses in agricultural statistics (Carfagna and Gallego, 
2005). This annex will only explore its use in the final stages of crop area estimation, excluding in particular its use 
in building a sampling frame. 

In the early times of satellite imagery, there was a widespread belief that pixel counting in classified satellite 
images would be enough to obtain accurate crop area estimates (Mc Donald and Hall, 1980). The initial setup of 
the USDA LACIE program was based on pixel counting on a sample of image pieces of 6 x 5 nautical miles. After 
some analysis, the approach was soon substituted with a regression estimator combining field data in a sample of 
segments with an exhaustive coverage of classified satellite images as covariates (Hanuschak et al., 1980). A main 
target became the cost-efficiency of remote sensing, the attainability of which appeared doubtful in the 1980s (Allen, 
1990), but was actually fully achieved in the 1990s (Hanuschak et al., 2001). 

Later, the European Union (EU) MARS Project followed a different path to reach a similar conclusion. In particular, 
the “rapid estimates of crop area changes” (called Activity B or Action 4) was an attempt to produce crop area change 
estimates from pixel counting on a set of 60 sites each extending over 40 km × 40 km. A subsequent assessment of 
the method indicated that the margin for subjectivity could be in the order of ±10 percent to ±30 percent for major 
crops (Gallego, 2006).

Annex
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A number of papers dealing with crop or land cover mapping continue to assume that pixel counting can be used 
to estimate areas without a specific analysis of the estimator’s properties. There are two main sources of error 
when classified satellite images are used for direct estimation: the presence of mixed (border) pixels; and the 
misclassification of pure pixels. An additional sampling error also appears if the region of interest is not fully covered 
but only a sample of images is considered. 

The effect of mixed pixels has been widely studied for low-resolution images (Mayaux and Lambin, 1995; Verbeiren 
et al., 2008; Wu, 2009, Atzberger et al., 2013). There is also some literature regarding high-resolution images 
(Chhikara, 1984). Moody and Woodcock (1994, 1996) studied the impact of scale (pixel size) on pixel counting 
area estimators by simulating coarse image classifications from Landsat TM classifications. They noticed that pixel 
counting tends to overestimate dominant classes and underestimate marginal classes; however, the importance of this 
effect can change for different landscapes or classification algorithms. Waldner and Defourny (2017) mainly focus 
on the bias component due to mixed pixels as a function of image resolution combined with sensor characteristics, 
and on the Matheron index of landscape complexity. For a large proportion of the South African landscape, Waldner 
and Defourny find that, using Landsat-8 images, the bias may exceed 10 percent of the crop area, even assuming a 
classification accuracy of 100 percent for pure pixels. The situation significantly improves when Sentinel-2 images 
are used. 

Initially, remote sensing users may believe that the accuracy of image classification is always better when the image 
resolution is finer. However, the question is more complex: a number of studies suggest that a high resolution can 
increase the within-class variability of the radiometric response of pure pixels of the same class, thereby degrading 
the separability between classes and thus the classification accuracy of pure pixels. On the other hand, a coarse 
spatial resolution increases the proportion of mixed pixels. The choice of an optimal resolution is a complex problem 
that requires making a trade-off (Latty et al., 1985; Cushnie, 1987; Treitz et al., 1992; Atkinson and Curran, 1997; 
Hsieh et al., 2001; Boschetti et al., 2004; Duveiller and Defourny, 2010; Löw and Duveiller, 2014). A reasonable rule 
of thumb might be choosing a resolution for which a large majority of pixels is pure (such as 90 percent), without 
trying to reach a vast majority (for example, 99 percent). However, this conjecture is far from being verified.    
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A2. The bias of pixel counting 

This section focuses on the impact of misclassification on pixel counting estimates, assuming that the impact of 
mixed pixels and missing data is negligible. The problem of bias in pixel counting has been well known to the remote 
sensing community since the late 1970s (Bauer et al., 1978; Card, 1982; Hay, 1988; Czaplewski, 1992). Several 
approaches have been developed to correct it. Here, we outline an expression of the bias in terms of the error matrix 
(or confusion matrix) and highlight some cautions that must be exercised during the correction. 

The relationship between a classified image and the actual land cover can be expressed by a confusion matrix. The 
confusion matrix A is considered for the entire population of pixels. In practice, A is unknown and must be estimated. 
Each cell Agc is the area of class g (ground) classified as c or the proportion compared with the total area of the 
region. Acc is the area correctly classified under class c. A+c is the total area classified as c, Ac+ is the unknown total 
area actually belonging to class c. The pixel counting estimator uses A+c to estimate Ac+. It has no variance unless 
it is computed on a sample of images. Its bias is the difference between the commission and the omission error. 
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Table 1 illustrates the sums to be made to compute the commission error Φc and omission error Ψc in a confusion 
matrix, expressed as total areas. In the literature on remote sensing, the confusion matrix is often expressed as 
a number of sample units; however, this is usually not a good choice because it may be strongly biased if it is 
considered as an estimator of A.

Table A1. �Confusion matrix with M classes. Yellow: commission error of class 
1 (wheat). Pink: omission error for the same class.

Unfortunately, there are no theorems for a classification algorithm that ensures that the commission and omission 
errors will tend to compensate each other. It should be noted that the commission and omission errors are usually 
expressed as ratios, dividing the errors Φc and Ψc by A+c  and Ac+ respectively (Congalton and Green, 1999). In this 
case, the expression of the bias becomes slightly more complicated (Gallego, 2004). It is preferred to express Φc 
and Ψc in terms of total areas, to keep the expression of the bias more simple.

 

277 
 

the confusion matrix is often expressed as a number of sample units; however, this is usually 
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     A

ctual class 
 Classified 
 1 2  M Total 
1 wheat A11 A12 …… A1M A1+ 
2 maize A21 A22 ……. A2M A2+ 
 ….     
M non-crop AM1 AM2 …… AMM AM+ 
Total A+1 A+2 ….. A+M A++ 

 

 
 
Table A5. Confusion matrix with M classes. Yellow: commission error of class 1 (wheat). Pink: omission error 
for the same class.  
 
Unfortunately, there are no theorems for a classification algorithm that ensures that the 
commission and omission errors will tend to compensate each other. It should be noted that 
the commission and omission errors are usually expressed as ratios, dividing the errors Φc 
and Ψc by A+c  and Ac+ respectively (Congalton and Green, 1999). In this case, the expression 
of the bias becomes slightly more complicated (Gallego, 2004). It is preferred to express Φc 
and Ψc in terms of total areas, to keep the expression of the bias more simple.  
 
In practice, the confusion matrix A is not known. The totals A+c of the columns are known 
and it is therefore possible to estimate the rest of the matrix and derived indicators, including 
Φc and Ψc. If the unbiased estimators  φc and ψc  can be computed, it will be necessary to 
obtain an unbiased estimator of the bias and it can be corrected. For this purpose, a few basic 
rules (listed below) must be observed. Additional details can be found in many works, for 
example Stehman (2009), Foody (2002) and McRoberts and Walters (2012). The rules are:  
• The validation data used to compute the confusion matrix must be selected with a 

statistical method, such as random stratified sampling, systematic with a random origin, 
etc. This rule is not always respected in remote sensing because of the cost of field data 
collection; however, it this is necessary for the correct computation of extrapolation 
weights. Failing to respect it may lead to a completely wrong bias correction (Gallego et 
al., 2016).  

• The validation sample should not include the data used to train the classification 
algorithm. The cost of field data collection often pushes practitioners to do so, but this is 
not recommendable 

• The validation sample and the training set should not be spatially correlated (Congalton 
and Green, 1999; Hammond and Verbyla, 1996; Zhen et al., 2013). For example, using a 
two-stage sampling scheme and selecting training and validation sets in the same PSUs 
may lead to a significant optimistic bias, in particular if the classification algorithm 
involves a large number of parameters (Gallego and Rueda, 1993). For neural network 
classifiers, the problem of overfitting that leads to optimistic bias has been widely studied 
in other fields (Tetko et al., 1995; Hawkins, 2004; Piotrowski and Napiorkowski, 2013; 
Lawrence et al., 1997). However, the extent to which it is considered in remote sensing is 
unclear.  

• Boundary pixels should not be excluded. This condition is debatable if only a measure of 
classification accuracy is required. Remote sensing practitioners often take only pure 
pixels (far enough from the boundaries) to avoid the pessimistic bias that may derive from 
misregistration (Verbyla and Hammond, 1995; Foody, 2008). However, if confusion 
matrices are used to correct the bias of pixel counting, mixed or boundary pixels should 
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In practice, the confusion matrix A is not known. The totals A+c of the columns are known and it is therefore possible 
to estimate the rest of the matrix and derived indicators, including Φc and Ψc. If the unbiased estimators φc and 
ψc  can be computed, it will be necessary to obtain an unbiased estimator of the bias and it can be corrected. For 
this purpose, a few basic rules (listed below) must be observed. Additional details can be found in many works, for 
example Stehman (2009), Foody (2002) and McRoberts and Walters (2012). The rules are:
•	 The validation data used to compute the confusion matrix must be selected with a statistical method, such as 

random stratified sampling, systematic with a random origin, etc. This rule is not always respected in remote 
sensing because of the cost of field data collection; however, it this is necessary for the correct computation of 
extrapolation weights. Failing to respect it may lead to a completely wrong bias correction (Gallego et al., 2016). 

•	 The validation sample should not include the data used to train the classification algorithm. The cost of field 
data collection often pushes practitioners to do so, but this is not recommendable

•	 The validation sample and the training set should not be spatially correlated (Congalton and Green, 1999; 
Hammond and Verbyla, 1996; Zhen et al., 2013). For example, using a two-stage sampling scheme and selecting 
training and validation sets in the same PSUs may lead to a significant optimistic bias, in particular if the 
classification algorithm involves a large number of parameters (Gallego and Rueda, 1993). For neural network 
classifiers, the problem of overfitting that leads to optimistic bias has been widely studied in other fields (Tetko 
et al., 1995; Hawkins, 2004; Piotrowski and Napiorkowski, 2013; Lawrence et al., 1997). However, the extent 
to which it is considered in remote sensing is unclear. 

•	 Boundary pixels should not be excluded. This condition is debatable if only a measure of classification accuracy 
is required. Remote sensing practitioners often take only pure pixels (far enough from the boundaries) to avoid 
the pessimistic bias that may derive from misregistration (Verbyla and Hammond, 1995; Foody, 2008). However, 
if confusion matrices are used to correct the bias of pixel counting, mixed or boundary pixels should also be 
considered. This requires a generalization of confusion matrices to subpixel or soft classifications (Pontius and 
Cheuk, 2006; Silván-Cárdenas and Wang, 2008). 

In principle, the bias is estimated from a sample of validation data, and its variance must be computed taking into 
account the sampling plan for the validation data. If the proportion of mixed pixels is negligible (as occurs in 
landscapes with very large homogeneous patches), binomial distribution in each of the strata used for the sample 
selection can be used to estimate the variances of φc and ψc. There is no guarantee that their distributions are 
independent; still, it may be reasonable to sum up both variances to obtain the variance of the bias. The variance of 
the estimated bias will become the variance of the bias-corrected pixel counting estimate. 

A2.1. Calibration estimators 
The most frequently used methods to correct the bias of pixel counting probably belong to the calibration estimator 
family. The way this expression is used in the remote sensing literature is related but not identical to the estimator 
that is usually called “calibration estimator” in the statistical literature (Brown, 1982; Deville and Särndal, 1992). 
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calibration estimator family. The way this expression is used in the remote sensing literature 
is related but not identical to the estimator that is usually called “calibration estimator” in the 
statistical literature (Brown, 1982; Deville and Särndal, 1992).  
 
Let  
A : confusion matrix for the total population. Unknown.  
T : column vector with ground truth totals  Tg=Ag+   (T stands for “truth”). Unknown. 
R : Column vector with  Rc=A+c  total area of pixels classified into each class c . Known. 
a : known confusion matrix from a sample of test pixels agc = estimated area of class g 
classified as c.  
t :  column vector of ground truth totals in the sample tg=ag+   .  
r : Column vector with ∑=

g
gcc ar  number of pixels classified into each class c  in the 

sample. 
TD , RD , tD  and rD   are diagonal matrices with elements gT , cR , gt  and cr . 

 
The vectorR  gives a biased but exhaustive information of the crop area. The objective is to 
estimate T  from the known elements R  and the confusion matrix a .  
 

1−ʹ= Tc DAE  and 1−= Rg DAE  are relative error matrices (unknown) on the population. cE  
gives the probability that a pixel is classified as c  knowing that the ground truth is g  and gE  
gives the probability that the ground truth is g  knowing that the pixel is classified as c .  
Similar matrices 1−ʹ= tc Dae  and 1−= rg Dae  can be computed from the sample. They are 
approximately unbiased estimators of cE and gE  if the sample data are extrapolated with the 
correct weights, inversely proportional to the sampling probability.  
 
The following expressions are identities derived directly from the definitions above:   
 

TETDAR cT =ʹ= −1                  RERDAT gR == −1              ⎟⎟
⎠

⎞
⎜⎜
⎝
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N
RT

NRT gg
gg            (2)  

if cE  is square and non-singular, we can write RET c
1−=  

Nicolas Deffense
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The vector R gives a biased but exhaustive information of the crop area. The objective is to estimate T from the 
known elements  R and the confusion matrix a.  

Ec = A' Dt
-1 and Eg = A DR

-1 are relative error matrices (unknown) on the population. Ec gives the probability that 
a pixel is classified as c knowing that the ground truth is g and Eg gives the probability that the ground truth is g 
knowing that the pixel is classified as c. 

Similar matrices ec = a' Dt
-1  and eg = a Dr

-1 can be computed from the sample. They are approximately unbiased 
estimators of Ec and Eg if the sample data are extrapolated with the correct weights, inversely proportional to the 
sampling probability. 

The following expressions are identities derived directly from the definitions above:  

This leads to three calibration estimators:

which is a maximum-likelihood estimator for a multinomial distribution (Tenenbein, 1972). The matrix eg contains 
estimates of the conditional probabilities p(g/c) of each ground class g given the class c in the classification.    

this is an asymptotically maximum likelihood (Grassia and Sundberg, 1982). The matrix ec contains estimates of 
the conditional probabilities p(c/g) of each image class c given the class g in the ground.
This estimator is presented in slightly different ways by Bauer et al. (1978), Priesley and Smith (1987) and Hay 
(1988). In a comment on the paper by Hay, Jupp (1989) analyses the risk of instability when   is nearly singular, 
that is, when some eigenvalues are very small. 

proposed by Dymond (1992). 
Woodcock and Gopal (2000) give an extension of the direct calibration estimator for fuzzy classifications, so that 
estimations can be computed for any membership level.
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This leads to three calibration estimators: 
Direct calibration:                                             ReT gdir =ˆ                 (3) 
 
which is a maximum-likelihood estimator for a multinomial distribution (Tenenbein, 1972). 
The matrix eg contains estimates of the conditional probabilities p(g/c) of each ground class g 
given the class c in the classification.      
 
Inverse calibration:                                             ReT cinv

1ˆ −=              (4) 
 
this is an asymptotically maximum likelihood (Grassia and Sundberg, 1982). The matrix ec 
contains estimates of the conditional probabilities p(c/g) of each image class c given the class 
g in the ground. 
This estimator is presented in slightly different ways by Bauer et al. (1978), Priesley and 
Smith (1987) and Hay (1988). In a comment on the paper by Hay, Jupp (1989) analyses the 
risk of instability when ce  is nearly singular, that is, when some eigenvalues are very small.  
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proposed by Dymond (1992).  
Woodcock and Gopal (2000) give an extension of the direct calibration estimator for fuzzy 
classifications, so that estimations can be computed for any membership level. 
 

A2.2. Computing the variance of some estimators 
 
To assess estimators that combine field data and classified images, it is important to compute 
the variance of the type of estimator that has been chosen. Computing variances can become 
complicated in many cases; here, the simplest situations will be seen; in particular, for the 
direct calibration  

ReT gdir =ˆ .   For a given ground class g,  

                                            +,-. / = 012
02% 	4%                (6) 

 
that is, the estimated area from a stratified sampling in which the classes c are the strata with 
size Rc known from the classified image.  
If the sampling is random in each class c and the sample size nc has been determined a priori 
in each class, the variance is provided by the usual binomial expression  
 
                            5,-. / = 6782

02
		012
02% 1 − 012

02
4%:        (7) 

 
where the finite population correction f is usually negligible in remote sensing applications. 
A fixed sample size nc presumes that the image classification is known before sampling. This 
usually happens for area estimation of land cover (or change) with environmental or forest 
monitoring purposes. If a previous stratification is available, both the area and variance 
estimators are computed separately in each stratum h and added later.  
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A2.2. 	 Computing the variance of some estimators

To assess estimators that combine field data and classified images, it is important to compute the variance of the type 
of estimator that has been chosen. Computing variances can become complicated in many cases; here, the simplest 
situations will be seen; in particular, for the direct calibration

that is, the estimated area from a stratified sampling in which the classes c are the strata with size Rc known from 
the classified image. 
If the sampling is random in each class c and the sample size nc has been determined a priori in each class, the 
variance is provided by the usual binomial expression 

where the finite population correction f is usually negligible in remote sensing applications.
A fixed sample size nc presumes that the image classification is known before sampling. This usually happens 
for area estimation of land cover (or change) with environmental or forest monitoring purposes. If a previous 
stratification is available, both the area and variance estimators are computed separately in each stratum h and 
added later. 

If the sample must be prepared before image classification, as may happen for the estimation of the area of annual 
crops, having a fixed nc is not possible. The sample size nc for different classes will have a multinomial distribution, 
in case of a simple random sampling, and the situation will be one of post-stratification defined by the classification; 
an additional term in the variance will be required (Cochran, 1977, p. 135). 

For the regression estimator reported in chapter 5 that exploits the link between the field proportion of a given crop 
y and the proportion x of a related class (the stratification sub-index is omitted here too):

When the sample size is not large enough or there is one or more strongly influential observations, a more complex 
approximation may be necessary (Gallego et al., 2014). It should be highlighted that a reasonable application of 
the regression estimator requires approximately continuous distributions of x and y between 0 and 1. This means 
that the sampling units should not be points (that would concentrate both distributions on 0 and 1), but rather area 
segments that are sufficiently large to contain several crop plots or landscape patches.
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where the finite population correction f is usually negligible in remote sensing applications. 
A fixed sample size nc presumes that the image classification is known before sampling. This 
usually happens for area estimation of land cover (or change) with environmental or forest 
monitoring purposes. If a previous stratification is available, both the area and variance 
estimators are computed separately in each stratum h and added later.  
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where the finite population correction f is usually negligible in remote sensing applications. 
A fixed sample size nc presumes that the image classification is known before sampling. This 
usually happens for area estimation of land cover (or change) with environmental or forest 
monitoring purposes. If a previous stratification is available, both the area and variance 
estimators are computed separately in each stratum h and added later.  
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If the sample must be prepared before image classification, as may happen for the estimation 
of the area of annual crops, having a fixed nc is not possible. The sample size nc for different 
classes will have a multinomial distribution, in case of a simple random sampling, and the 
situation will be one of post-stratification defined by the classification; an additional term in 
the variance will be required (Cochran, 1977, p. 135).  
 
For the regression estimator reported in chapter 5 that exploits the link between the field 
proportion of a given crop y and the proportion x of a related class (the stratification sub-
index is omitted here too): 
 

                               ;<=> = ; + @	(B − C)                           (8)    
 
the usual approximation for the computation of the variance is 
  
                                        5EF ;<=> = 5EF ; 	 1 − FGH:              (9) 
 
When the sample size is not large enough or there is one or more strongly influential 
observations, a more complex approximation may be necessary (Gallego et al., 2014). It 
should be highlighted that a reasonable application of the regression estimator requires 
approximately continuous distributions of x and y between 0 and 1. This means that the 
sampling units should not be points (that would concentrate both distributions on 0 and 1), 
but rather area segments that are sufficiently large to contain several crop plots or landscape 
patches.  
 
 

A2.3. Confusion matrices expressed as numbers of points  
 
The expressions provided in the previous section refer to the application of direct and inverse 
calibration estimators using extrapolated confusion matrices, assuming that the matrix has 
been built on the basis of a sample with known sampling probabilities pi and extrapolated 
with weights 1/pi . Unbiasedness is only approximate when unbiased estimators appear in 
denominators; at any rate, the distortions will be minor if the sample is large compared to the 
number of cells in the confusion matrix.  
In the literature on remote sensing, confusion matrices are often expressed in terms of  agc , 
the number of pixels belonging to ground class g that have been classified into class c. At this 
point, three situations linked to the sampling plan used to select the field sample may be 
distinguished.  
1. If the sampling probability is uniform across the whole region, the confusion matrix a 

becomes an unbiased estimator of A by simply applying a constant extrapolation factor, 
and can be used for both direct and inverse calibration. This is usually the situation if the 
sample is selected before the images are acquired and classified. With this sampling 
strategy, the confusion matrix a  expressed in terms of a number of points can be used 
both for direct and inverse calibration. 

2. If the sample of points for field observation is selected after the classification of images, 
the classes c can be used as strata to sample points for field observation. This approach is 
generally recommended when the field sample is used to validate land cover maps 
obtained from images and, at the same time, build area estimations that combine field 
observations with classified images (Stehman, 2009). The sample size nc is determined by 
applying an allocation system (Wagner and Stehman, 2015), or simply by rules of thumb 



Handbook on remote sensing for agricultural statistics 255

A2.3. 	 Confusion matrices expressed as numbers of points 

The expressions provided in the previous section refer to the application of direct and inverse calibration estimators 
using extrapolated confusion matrices, assuming that the matrix has been built on the basis of a sample with known 
sampling probabilities pi and extrapolated with weights 1/pi . Unbiasedness is only approximate when unbiased 
estimators appear in denominators; at any rate, the distortions will be minor if the sample is large compared to the 
number of cells in the confusion matrix. 

In the literature on remote sensing, confusion matrices are often expressed in terms of  agc , the number of pixels 
belonging to ground class g that have been classified into class c. At this point, three situations linked to the sampling 
plan used to select the field sample may be distinguished. 
1.	 If the sampling probability is uniform across the whole region, the confusion matrix a becomes an unbiased 

estimator of A by simply applying a constant extrapolation factor, and can be used for both direct and inverse 
calibration. This is usually the situation if the sample is selected before the images are acquired and classified. 
With this sampling strategy, the confusion matrix a expressed in terms of a number of points can be used both 
for direct and inverse calibration.

2.	 If the sample of points for field observation is selected after the classification of images, the classes c can be used as 
strata to sample points for field observation. This approach is generally recommended when the field sample is used 
to validate land cover maps obtained from images and, at the same time, build area estimations that combine field 
observations with classified images (Stehman, 2009). The sample size nc is determined by applying an allocation 
system (Wagner and Stehman, 2015), or simply by rules of thumb such as “at least 50 points per stratum”. With 
this sampling strategy, the direct calibration estimator can be used with a without extrapolating to A. Commission 
errors will be correct because the sampling probability is homogeneous in each classification class c; however, 
omission errors may be strongly biased when the sampling probability changes greatly from class to class (Gallego, 
2016). Inverse calibration cannot be used without a correct extrapolation to A.

3.	 The number of points ng to be observed in each ground class g is determined a priori. This approach is sometimes 
applied with a purposive sampling that can be referred to as quota sampling: field surveyors will be circulated 
with the aim of collecting a given number of points. For example, the target may be recording coordinates of 
50 points in maize fields, 50 points in wheat fields and 50 points in other land cover classes. Surveyors travel 
around and choose points that they consider to be “representative”, often in the middle of large fields. This is a 
practical way to collect field data at a low cost; however, the impact on the possible bias of estimators is not well 
known. Probabilistic sampling methods in which ng is fixed a priori may be envisaged, although the sampling 
probabilities are likely to be complex. In any case, the author of this annex is not aware of any application in 
the context of agricultural surveys. If it is assumed that this sampling strategy can be applied with a uniform 
probability for each ground class g, inverse calibration can be applied on a,  omission errors will be correct, 
but the commission errors will be biased. Direct calibration cannot be used without extrapolating to A. If the 
analyst is confident that the conditional probability p(c/g) is computed on a quota sample, an inverse calibration 
estimator based on the confusion matrix a expressed in number of points or pixels may be a cheap solution. 
From the quota sample, the extrapolation to A will not be possible and the direct calibration estimator cannot 
be used. Commission and omission errors computed from a cannot be compared to assess whether direct pixel 
counting on the classified images overestimates or underestimates each class c.

Generally, probabilistic sampling is recommended for both land cover maps validation and for area estimation 
combining field data with classified satellite images (Congalton and Green, 1999; Foody, 2002; Stehman et al., 
2003, 2005; Wagner and Stehman, 2015; Olofsson et al., 2013, 2014; Li et al., 2014). However, if a survey based 
on probabilistic sampling cannot be afforded, it is legitimate to seek cheaper systems. The inverse calibration 
estimator based on a quota field sampling might be a good approach, although the suitability is likely to be related 
to the share of pure and mixed pixels.
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A2.4. 	W hich approach is best to correct the bias? 
All calibration estimators encounter problems when dealing with mixed pixels, because the sampling unit is a point 
or a pixel and the location accuracy is usually in the order of magnitude of a pixel. Thus, a pixel in the image is 
compared with field data that correspond to a neighboring pixel. When the plot size is small or crops are mixed, 
as generally happens in less developed agriculture, image classification is not very accurate and the efficiency of 
calibration estimators is further reduced by co-location inaccuracy. For example, Ceccarelli et al. (2016) have found 
that calibration estimators gave relative efficiencies close to 1 in tests conducted in Senegal and Kenya, despite 
using RapidEye images with a resolution of approximately 5 m. This means that, for this particular example, the ex 
post use of classified images did not significantly improve the accuracy of field surveys, although the same study 
gives a more optimistic assessment of the use of images to improve the sampling frame.

If an inverse calibration estimator is used with a quota sampling of points in the middle of relatively large fields, the 
problem of misregistration (co-location inaccuracy) will be irrelevant. The impact of nonprobabilistic sampling on 
the estimations is not well known, even if it is known that it introduces an optimistic bias in the confusion matrix 
(Hammond and Verbyla, 1996). 

The problem of mixed pixels can be formally addressed by considering subpixel land cover proportions; however, 
there is as yet insufficient knowledge on the behaviour of calibration estimators with subpixel classifiers. 

Czaplewski and Catts (1992) and Walsh and Burk (1993) compare T̂dir and T̂inv in different data sets and report a 
superior performance of the direct estimator against several criteria: feasibility, bias and variance. Yuan (1997) finds 
that T̂inv gives a slightly smaller variance than T̂dir and poorer results for Dymond’s additive correction; according 
to his results, T̂dir is still preferable from the point of view of bias if the sample is not very large compared to the 
number of cells in the confusion matrix. 

The regression estimator is generally less sensitive to location inaccuracy. The regression estimator is suitable when 
the sampling units are segments or clusters of points containing a relatively large number of pixels. It can also be 
seen as a bias correction method, and it does not exclude mixed pixels that are naturally included in the sampling 
units. If the sampling units are segments with a size at least one order of magnitude larger than the registration 
inaccuracy, the impact of location uncertainty is minor. For example, if the images have a resolution of 20 m, the 
location uncertainty is likely to be in the order of 20 m. If the sampling units are square segments of 300 m x 300 
m or 500 m x 500 m, they approximately correspond to the same patch in the field data and the image, including 
mixed pixels. From this point of view, the regression estimator is probably the safest bias correction for crop area 
estimation, even if it is less frequently applied in the literature on remote sensing than calibration estimators. 

Kerdiles et al. (2013) and Liu et al. (2014) report values between 1.6 and 2.7 for the relative efficiency of the 
regression estimator in test areas in China with complex landscapes of thin stripes. 

Li et al. (2014) compare various estimators in three pilot areas in China and obtain better results for regression 
estimators than for calibration estimators. They also observe a stronger degradation of the inverse calibration when 
the accuracy of the image classification becomes weaker.
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A3. The problem of subjectivity in pixel counting estimation

Pixel counting may pose a dilemma if an a priori belief is available from external information on the area of a given 
crop c. Suppose, for example, that an area close to 1 000 000 ha is expected. The image analyst will compute a 
first area estimate with a given setup of the classification. The setup of the classification includes the choice of the 
algorithm type, the rules to eliminate outliers or fill missing data, and the tuning of specific parameters. A simple 
example of a specific parameter is the prior probability in the maximum likelihood classifier. 

If the area classified as c is far from the expected figure of 1 000 000 ha, a conscientious analyst will probably 
attempt to improve the classification reviewing the initial setup until a more suitable agreement is found. This 
approach towards improving the classification, is certainly acceptable, conceived as an answer to the question 
“Where is the crop c grown?”. However, doubts appear as to the objectivity of the estimated area if direct pixel 
counting is used. This is a major reason to emphasize the importance of rigorous bias correction when estimating 
areas from classified images.
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